Manuals/calci/BETADISTX

From ZCubes Wiki
Revision as of 14:30, 7 December 2016 by Devika (talk | contribs) (→‎Examples)
Jump to navigation Jump to search
BETADISTX(x,alpha,beta)


  • is any real number.
  • alpha and beta are the value of the shape parameter

Description

  • This function gives the Cumulative Beta Probability Density function.
  • The beta distribution is a family of Continuous Probability Distributions defined on the interval [0, 1] parameterized by two positive shape parameters, denoted by and .
  • The Beta Distribution is also known as the Beta Distribution of the first kind.
  • In , is any real number.
  • alpha is the value of the shape parameter.
  • beta is the value of the shape parameter
  • The Probability Density Function of the beta distribution is:

where ; and is the Beta function.

  • The formula for the Cumulative Beta Distribution is called the Incomplete Beta function ratio and it is denoted by and is defined as :

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle F(x)=I_{x}(\alpha,\beta)=\int\limits_{0}^{x}\frac{t^{α−1}(1−t)^{\beta−1}dt} {B(\alpha,\beta)}} , where  ; and is the Beta function.

  • This function will give the result as error when
1.Any one of the arguments are non-numeric.
2. or 

Examples

  1. =BETADISTX(0.67,9,12) = 0.3102416743686678
  2. =BETADISTX(6,34,37) = 2.576888446568541e+72
  3. =BETADISTX(100,456,467)= NaN

See Also

References

Beta Distribution