Manuals/calci/BESSELJ

From ZCubes Wiki
Revision as of 00:59, 29 November 2013 by Jayaram (talk | contribs)
Jump to navigation Jump to search
BESSELJ(x,n)


  • where 'x' is the value at which to evaluate the function and n is the integer which is the order of the Bessel function

Description

  • This function gives the value of the modified Bessel function.
  • Bessel functions is also called cylinder functions because they appear in the solution to Laplace's equation in cylindrical coordinates.
  • Bessel's Differential Equation is defined as: x^2 (d^2 y/dx^2) + x(dy/dx) + (x^2 - α^2)y =0

where α is the arbitary complex number.

  • But in most of the cases α is the non-negative real number.
  • The solutions of this equation are called Bessel Functions of order n.
  • Bessel functions of the first kind, denoted as Jn(x), and
  • The Bessel function of the first kind of order can be expressed as:Jn(x)=summation(k=0 to infinity){(-1)^k(x/2)^n+2k}/k!gamma(n+k+1), where gamma(n+k+1)=(n+k)! or *Integral 0 to infinity x^(n+k).e^-x dx. is the gamma function.
  • This function will give the result as error when 1.x or n is non numeric 2. n<0, because n is the order of the function

Examples

  1. BESSELI(3,2)=2.245212431(Excel) this is the n th derivative(In(x))=3.9533702171(Calci)this is the 1st derivative(I1(x))
  2. BESSELI(5,1)=24.33564185
  3. BESSELI(6,0)=67.23440724(Excel) I0(x)61.3419369373(CALCI) I1(x)
  4. BESSELI(-2,1)=0.688948449(Excel) =-1.5906368573(CALCI)
  5. BESSELI(2,-1)=NAN ,because n<0.

See Also

References

Absolute_value