Manuals/calci/BESSELJ
BESSELJ(x,n)
- is the value to evaluate the function
- is the order of the Bessel function and is an integer
Description
- This function gives the value of the modified Bessel function.
- Bessel functions is also called Cylinder Functions because they appear in the solution to Laplace's equation in cylindrical coordinates.
- Bessel's Differential Equation is defined as:
where is the Arbitrary Complex Number.
- But in most of the cases is the non-negative real number.
- The solutions of this equation are called Bessel Functions of order n.
- Bessel functions of the first kind, denoted as
- The Bessel function of the first kind of order can be expressed as:
- where or
- is the Gamma Function.
- This function will give result as error when
1. or is non numeric 2. , because is the order of the function
Examples
- BESSELJ(2,3) = 0.12894325(EXCEL)Jn(x) = 0.10728467204(calci)J1(x)0.5767248079(Actual)J1(x)
- BESSELJ(7,2) = -0.301417224(EXCEL)Jn(x) = NAN(calci) = -0.0046828257(Actual)J1(x)
- BESSELJ(5,1) = -0.327579139(EXCEL)Jn(x)= NAN(calci)