Difference between revisions of "Manuals/calci/BESSELK"

From ZCubes Wiki
Jump to navigation Jump to search
 
(22 intermediate revisions by 4 users not shown)
Line 1: Line 1:
 
<div style="font-size:30px">'''BESSELK(x,n)'''</div><br/>
 
<div style="font-size:30px">'''BESSELK(x,n)'''</div><br/>
*Where <math>x</math> is the value at which to evaluate the function
+
*Where <math>x</math> is the value at which to evaluate the function.
*<math>n</math> is the integer which is the order of the Bessel Function
+
*<math>n</math> is the integer which is the order of the Bessel Function.
 +
**Returns the modified Bessel Function Kn(x).
 +
 
 
==Description==
 
==Description==
 
*This function gives the value of the modified Bessel function when the arguments are purely imaginary.
 
*This function gives the value of the modified Bessel function when the arguments are purely imaginary.
Line 7: Line 9:
 
*Bessel's Differential Equation is defined as:
 
*Bessel's Differential Equation is defined as:
 
<math>x^2 \frac{d^2 y}{dx^2} + x\frac{dy}{dx} + (x^2 - \alpha^2)y =0</math>  
 
<math>x^2 \frac{d^2 y}{dx^2} + x\frac{dy}{dx} + (x^2 - \alpha^2)y =0</math>  
where <math>\alpha</math> is the Arbitrary Complex number.
+
where <math>\alpha</math> is the arbitrary Complex number.
 
*But in most of the cases α is the non-negative real number.
 
*But in most of the cases α is the non-negative real number.
 
*The solutions of this equation are called Bessel Functions of order <math>n</math>.  
 
*The solutions of this equation are called Bessel Functions of order <math>n</math>.  
*Bessel functions of the first kind, denoted as <math>Jn(x)</math>.  
+
*Bessel functions of the first kind, denoted as <math>J_n(x)</math>.  
*The Bessel function of the first kind of order can be expressed as:<math>Jn(x)=sum_{k=0}^\infty}\frac{(-1)^k}{k!\Gamma(n+k+1)}.(\frac{x}{2})^{n+2k}</math>
+
*The Bessel function of the first kind of order can be expressed as:
*The Bessel function of the second kind  <math>Yn(x)</math>.
+
<math>J_n(x)=\sum_{k=0}^\infty \frac{(-1)^k*(\frac{x}{2})^{n+2k} }{k!\Gamma(n+k+1)}</math>
*The Bessel function of the 2nd kind of order  can be expressed as: <math>Yn(x)=\lim_{p \to n}{J_p(x)Cos(p\pi)- J_{-p}(x)}/Sin(p\pi)</math>.
+
*The Bessel function of the second kind  <math>Y_n(x)</math>.
*So the form of the general solution is y(x)=c1 In(x)+c2 Kn(x). where In(x)=i^-nJn(ix) and Kn(x)=lt p tends to n pi()/2[( I-p(x)-I p(x))/Sinp pi()] are the modified Bessel functions of the first and second kind respectively.
+
*The Bessel function of the 2nd kind of order  can be expressed as: <math>Y_n(x)= \lim_{p \to n}\frac{J_p(x)Cos(p\pi)- J_{-p}(x)}{Sin(p\pi)}</math>
*This function will give the result as error when 1.x or n is non numeric 2. n<0, because n is the order of the function.
+
*So the form of the general solution is <math>y(x)=c1 I_n(x)+c2 K_n(x)</math>.
 +
where: <math>I_n(x)=i^{-n}J_n(ix)</math>
 +
and  
 +
:<math>K_n(x)=\lim_{p \to n}\frac{\pi}{2}\left[ \frac{I_{-p}(x)-I_p(x)}{Sin(p\pi)}\right]</math>
 +
are the modified Bessel functions of the first and second kind respectively.
 +
*This function will give the result as error when:
 +
1. <math>x</math> or <math>n</math> is non numeric  
 +
2. <math>n<0</math>, because <math>n</math> is the order of the function.
  
 
==Examples==
 
==Examples==
  
#BESSELK(5,2)=0.005308944 (EXCEL)Kn(x) =0.0040446134(CALCI)K1(x)
+
#BESSELK(5,2) = 0.005308943735243616
#BESSELK(0.2,4)=29900.2492 (EXCEL)Kn(x)=4.7759725484(CALCI)K1(x)
+
#BESSELK(0.2,4) = 29900.24920401114
#BESSELK(10,1)=0.000155369
+
#BESSELK(10,1) = 0.00001864877394684907
#BESSELK(2,-1)=NAN
+
#BESSELK(2,-1) = #N/A (ORDER OF FUNCTION < 0)
 +
 
 +
==Related Videos==
 +
 
 +
{{#ev:youtube|__fdGscBZjI|280|center|BESSEL Equation}}
  
 
==See Also==
 
==See Also==
Line 30: Line 43:
  
 
==References==
 
==References==
[http://en.wikipedia.org/wiki/Absolute_value| Absolute_value]
+
[http://en.wikipedia.org/wiki/Bessel_function  Bessel Function]
 +
 
 +
 
 +
 
 +
*[[Z_API_Functions | List of Main Z Functions]]
 +
 
 +
*[[ Z3 |  Z3 home ]]

Latest revision as of 08:04, 29 September 2021

BESSELK(x,n)


  • Where is the value at which to evaluate the function.
  • is the integer which is the order of the Bessel Function.
    • Returns the modified Bessel Function Kn(x).

Description

  • This function gives the value of the modified Bessel function when the arguments are purely imaginary.
  • Bessel functions is also called cylinder functions because they appear in the solution to Laplace's equation in cylindrical coordinates.
  • Bessel's Differential Equation is defined as:

where is the arbitrary Complex number.

  • But in most of the cases α is the non-negative real number.
  • The solutions of this equation are called Bessel Functions of order .
  • Bessel functions of the first kind, denoted as .
  • The Bessel function of the first kind of order can be expressed as:

  • The Bessel function of the second kind .
  • The Bessel function of the 2nd kind of order can be expressed as:
  • So the form of the general solution is .

where: and

are the modified Bessel functions of the first and second kind respectively.

  • This function will give the result as error when:
1.  or  is non numeric 
2. , because  is the order of the function.

Examples

  1. BESSELK(5,2) = 0.005308943735243616
  2. BESSELK(0.2,4) = 29900.24920401114
  3. BESSELK(10,1) = 0.00001864877394684907
  4. BESSELK(2,-1) = #N/A (ORDER OF FUNCTION < 0)

Related Videos

BESSEL Equation

See Also

References

Bessel Function