Difference between revisions of "Manuals/calci/IMABS"

From ZCubes Wiki
Jump to navigation Jump to search
 
(10 intermediate revisions by 4 users not shown)
Line 1: Line 1:
<div style="font-size:30px">'''IMABS(in)'''</div><br/>
+
<div style="font-size:30px">'''IMABS(ComplexNumber)'''</div><br/>
  
*where <math>in</math> is the complex number of the form <math>x+iy</math>
+
*<math>ComplexNumber</math> is of the form <math>x+iy</math>
 +
**IMABS(),returns the absolute value (modulus) of a complex number
  
 
==Description==
 
==Description==
Line 7: Line 8:
 
*Complex number <math>z=x+iy</math>, where <math>x</math> & <math>y</math> are real numbers and <math>i</math> is the imaginary unit <math>i=\sqrt{-1}</math>.
 
*Complex number <math>z=x+iy</math>, where <math>x</math> & <math>y</math> are real numbers and <math>i</math> is the imaginary unit <math>i=\sqrt{-1}</math>.
 
*A complex number's absolute value is measured from zero on the complex number plane.   
 
*A complex number's absolute value is measured from zero on the complex number plane.   
*We can use COMPLEX function to convert real and imaginary number into a complex number.  
+
*We can use [[Manuals/calci/COMPLEX | COMPLEX ]] function to convert real and imaginary number into a complex number.  
 
*The absolute value of a complex number is: <math>IMABS(z)=|z|=\sqrt{x^2+y^2}</math>
 
*The absolute value of a complex number is: <math>IMABS(z)=|z|=\sqrt{x^2+y^2}</math>
 +
 +
==ZOS==
 +
 +
*The syntax is to calculate IMABS in ZOS is <math>IMABS(ComplexNumber)</math>.
 +
**<math>ComplexNumber</math> is of the form <math>x+iy</math>.
 +
**For e.g.,IMABS("5-7i")+IMABS("6+4i")
 +
{{#ev:youtube|h6yVa1aycOg|280|center|Absolute Value of Imaginary Number}}
  
 
==Examples==
 
==Examples==
  
*IMABS("6+8i") = <math>\sqrt{100}</math> = 10
+
*IMABS("6+8i") = <math>\sqrt{6^2+8^2}</math> = <math>\sqrt{100}</math> = 10
*IMABS("5-7i") = <math>\sqrt{74}</math> = 8.60232
+
*IMABS("5-7i") = <math>\sqrt{74}</math> = 8.602325267042627
*IMABS("-3-5i")= <math>\sqrt{34}</math> = 5.83095
+
*IMABS("-3-5i")= <math>\sqrt{34}</math> = 5.830951894845301
 +
 
 +
==Related Videos==
 +
 
 +
{{#ev:youtube|yvzyC4VBpUU|280|center|Absolute Value of a Complex Number}}
  
 
==See Also==
 
==See Also==
Line 22: Line 34:
  
 
==References==
 
==References==
[http://en.wikipedia.org/wiki/Absolute_value| Absolute Value]
+
[http://en.wikipedia.org/wiki/Absolute_value Absolute Value]
 +
 
 +
 
 +
 
 +
*[[Z_API_Functions | List of Main Z Functions]]
 +
 
 +
*[[ Z3 |  Z3 home ]]

Latest revision as of 03:07, 23 October 2020

IMABS(ComplexNumber)


  • is of the form
    • IMABS(),returns the absolute value (modulus) of a complex number

Description

  • This function gives the absolute value of a complex number of the form .
  • Complex number , where & are real numbers and is the imaginary unit .
  • A complex number's absolute value is measured from zero on the complex number plane.
  • We can use COMPLEX function to convert real and imaginary number into a complex number.
  • The absolute value of a complex number is:

ZOS

  • The syntax is to calculate IMABS in ZOS is .
    • is of the form .
    • For e.g.,IMABS("5-7i")+IMABS("6+4i")
Absolute Value of Imaginary Number

Examples

  • IMABS("6+8i") = = = 10
  • IMABS("5-7i") = = 8.602325267042627
  • IMABS("-3-5i")= = 5.830951894845301

Related Videos

Absolute Value of a Complex Number

See Also

References

Absolute Value