Difference between revisions of "Manuals/calci/IMABS"
Jump to navigation
Jump to search
(6 intermediate revisions by 4 users not shown) | |||
Line 2: | Line 2: | ||
*<math>ComplexNumber</math> is of the form <math>x+iy</math> | *<math>ComplexNumber</math> is of the form <math>x+iy</math> | ||
+ | **IMABS(),returns the absolute value (modulus) of a complex number | ||
==Description== | ==Description== | ||
Line 10: | Line 11: | ||
*The absolute value of a complex number is: <math>IMABS(z)=|z|=\sqrt{x^2+y^2}</math> | *The absolute value of a complex number is: <math>IMABS(z)=|z|=\sqrt{x^2+y^2}</math> | ||
− | ==ZOS | + | ==ZOS== |
*The syntax is to calculate IMABS in ZOS is <math>IMABS(ComplexNumber)</math>. | *The syntax is to calculate IMABS in ZOS is <math>IMABS(ComplexNumber)</math>. | ||
**<math>ComplexNumber</math> is of the form <math>x+iy</math>. | **<math>ComplexNumber</math> is of the form <math>x+iy</math>. | ||
**For e.g.,IMABS("5-7i")+IMABS("6+4i") | **For e.g.,IMABS("5-7i")+IMABS("6+4i") | ||
+ | {{#ev:youtube|h6yVa1aycOg|280|center|Absolute Value of Imaginary Number}} | ||
==Examples== | ==Examples== | ||
*IMABS("6+8i") = <math>\sqrt{6^2+8^2}</math> = <math>\sqrt{100}</math> = 10 | *IMABS("6+8i") = <math>\sqrt{6^2+8^2}</math> = <math>\sqrt{100}</math> = 10 | ||
− | *IMABS("5-7i") = <math>\sqrt{74}</math> = 8. | + | *IMABS("5-7i") = <math>\sqrt{74}</math> = 8.602325267042627 |
− | *IMABS("-3-5i")= <math>\sqrt{34}</math> = 5. | + | *IMABS("-3-5i")= <math>\sqrt{34}</math> = 5.830951894845301 |
+ | |||
+ | ==Related Videos== | ||
+ | |||
+ | {{#ev:youtube|yvzyC4VBpUU|280|center|Absolute Value of a Complex Number}} | ||
==See Also== | ==See Also== | ||
Line 29: | Line 35: | ||
==References== | ==References== | ||
[http://en.wikipedia.org/wiki/Absolute_value Absolute Value] | [http://en.wikipedia.org/wiki/Absolute_value Absolute Value] | ||
+ | |||
+ | |||
+ | |||
+ | *[[Z_API_Functions | List of Main Z Functions]] | ||
+ | |||
+ | *[[ Z3 | Z3 home ]] |
Latest revision as of 03:07, 23 October 2020
IMABS(ComplexNumber)
- is of the form
- IMABS(),returns the absolute value (modulus) of a complex number
Description
- This function gives the absolute value of a complex number of the form .
- Complex number , where & are real numbers and is the imaginary unit .
- A complex number's absolute value is measured from zero on the complex number plane.
- We can use COMPLEX function to convert real and imaginary number into a complex number.
- The absolute value of a complex number is:
ZOS
- The syntax is to calculate IMABS in ZOS is .
- is of the form .
- For e.g.,IMABS("5-7i")+IMABS("6+4i")
Examples
- IMABS("6+8i") = = = 10
- IMABS("5-7i") = = 8.602325267042627
- IMABS("-3-5i")= = 5.830951894845301
Related Videos
See Also
References