Difference between revisions of "Manuals/calci/BESSELY"

 
(5 intermediate revisions by 3 users not shown)
Line 2: Line 2:
 
*<math>x</math> is the value at which to evaluate the function
 
*<math>x</math> is the value at which to evaluate the function
 
*<math>n</math> is the integer which is the order of the Bessel Function
 
*<math>n</math> is the integer which is the order of the Bessel Function
 
+
**BESSELY(), returns the Bessel Function Yn(x)
 
==Description==
 
==Description==
 
*This function gives the value of the modified Bessel function.
 
*This function gives the value of the modified Bessel function.
Line 17: Line 17:
 
  2. <math>n<0</math>, because <math>n</math> is the order of the function.
 
  2. <math>n<0</math>, because <math>n</math> is the order of the function.
  
==ZOS Section==
+
==ZOS==
 
*The syntax is to calculate BESSELY in ZOS is <math>BESSELY(x,n)</math>.
 
*The syntax is to calculate BESSELY in ZOS is <math>BESSELY(x,n)</math>.
 
**<math>x</math> is the value at which to evaluate the function
 
**<math>x</math> is the value at which to evaluate the function
 
**<math>n</math> is the integer which is the order of the Bessel Function
 
**<math>n</math> is the integer which is the order of the Bessel Function
  
 +
==Examples==
 +
 +
#=BESSELY(2,3) = -1.1277837651220644
 +
#=BESSELY(0.7,4)= -132.6340573047033
 +
#=BESSELY(9,1) = 0.10431457495919716
 +
#=BESSELY(2,-1) = #N/A (ORDER OF FUNCTION < 0)
  
==Examples==
+
==Related Videos==
  
#=BESSELY(2,3) = -1.127783765
+
{{#ev:youtube|__fdGscBZjI|280|center|BESSEL Equation}}
#=BESSELY(0.7,4)= -132.6340573
 
#=BESSELY(9,1) = 0.104314575
 
#=BESSELY(2,-1) = NAN
 
  
 
==See Also==
 
==See Also==
Line 37: Line 40:
 
==References==
 
==References==
 
[http://en.wikipedia.org/wiki/Bessel_function  Bessel Function]
 
[http://en.wikipedia.org/wiki/Bessel_function  Bessel Function]
 +
 +
 +
 +
*[[Z_API_Functions | List of Main Z Functions]]
 +
 +
*[[ Z3 |  Z3 home ]]

Latest revision as of 07:07, 29 September 2021

BESSELY(x,n)


  • Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x} is the value at which to evaluate the function
  • Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle n} is the integer which is the order of the Bessel Function
    • BESSELY(), returns the Bessel Function Yn(x)

Description

  • This function gives the value of the modified Bessel function.
  • Bessel functions is also called Cylinder Functions because they appear in the solution to Laplace's equation in cylindrical coordinates.
  • Bessel's Differential Equation is defined as: Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x^2 \frac{d^2 y}{dx^2} + x\frac{dy}{dx} + (x^2 - \alpha^2)y =0}

where Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \alpha} is the arbitrary complex number.

  • But in most of the cases Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \alpha} is the non-negative real number.
  • The solutions of this equation are called Bessel Functions of order Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle n} .
  • The Bessel function of the second kind Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle Yn(x)} and sometimes it is called Weber Function or the Neumann Function..
  • The Bessel function of the 2nd kind of order can be expressed as: Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle Yn(x)= \lim_{p \to n}\frac{J_p(x)Cos(p\pi)- J_{-p}(x)}{Sin(p\pi)}}
  • where Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle Jn(x)} is the Bessel functions of the first kind.
  • This function will give the result as error when:
1. Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x}
 or   is non numeric 
2. Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle n<0}
, because Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle n}
 is the order of the function.

ZOS

  • The syntax is to calculate BESSELY in ZOS is Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle BESSELY(x,n)} .
    • Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x} is the value at which to evaluate the function
    • Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle n} is the integer which is the order of the Bessel Function

Examples

  1. =BESSELY(2,3) = -1.1277837651220644
  2. =BESSELY(0.7,4)= -132.6340573047033
  3. =BESSELY(9,1) = 0.10431457495919716
  4. =BESSELY(2,-1) = #N/A (ORDER OF FUNCTION < 0)

Related Videos

BESSEL Equation

See Also

References

Bessel Function