Difference between revisions of "Manuals/calci/GAMMADIST"

From ZCubes Wiki
Jump to navigation Jump to search
 
(4 intermediate revisions by 3 users not shown)
Line 4: Line 4:
 
*<math>cumulative</math> is the logical value like true or false.
 
*<math>cumulative</math> is the logical value like true or false.
 
*<math>accuracy</math> gives accurate value of the solution.
 
*<math>accuracy</math> gives accurate value of the solution.
 +
**GAMMADIST(), returns the gamma distribution.
  
 
==Description==
 
==Description==
Line 30: Line 31:
 
  2.<math>x<0</math>, <math>\alpha \le 0</math> or <math>\beta \le 0</math>.
 
  2.<math>x<0</math>, <math>\alpha \le 0</math> or <math>\beta \le 0</math>.
  
==ZOS Section==
+
==ZOS==
 
*The syntax is to calculate GAMMADIST in ZOS is <math>GAMMADIST(x,alpha,beta,cumulative,accuracy)</math>.
 
*The syntax is to calculate GAMMADIST in ZOS is <math>GAMMADIST(x,alpha,beta,cumulative,accuracy)</math>.
 
**<math>x</math> is the value of the distribution,
 
**<math>x</math> is the value of the distribution,
Line 47: Line 48:
 
#GAMMADIST(8.15372,5,7,TRUE,0.5)= 0.00693316259
 
#GAMMADIST(8.15372,5,7,TRUE,0.5)= 0.00693316259
 
#GAMMADIST(8.15372,5,7,TRUE,0.9)=0.0067648564
 
#GAMMADIST(8.15372,5,7,TRUE,0.9)=0.0067648564
 +
 +
==Related Videos==
 +
 +
{{#ev:youtube|SAMTXAAKeug|280|center|GAMMA Distribution}}
  
 
==See Also==
 
==See Also==
Line 55: Line 60:
 
==References==
 
==References==
 
[http://en.wikipedia.org/wiki/Gamma_distribution  Gamma Distribution]
 
[http://en.wikipedia.org/wiki/Gamma_distribution  Gamma Distribution]
 +
 +
 +
 +
*[[Z_API_Functions | List of Main Z Functions]]
 +
 +
*[[ Z3 |  Z3 home ]]

Latest revision as of 16:08, 7 August 2018

GAMMADIST(x,alpha,beta,cumulative,accuracy)


  • is the value of the distribution.
  • and are the value of the parameters.
  • is the logical value like true or false.
  • gives accurate value of the solution.
    • GAMMADIST(), returns the gamma distribution.

Description

  • This function gives the value of the Gamma Distribution.
  • The Gamma Distribution can be used in a queuing models like, the amount of rainfall accumulated in a reservoir.
  • This distribution is the Continuous Probability Distribution with two parameters and .
  • In , is the value of the distribution, is called shape parameter and is the rate parameter of the distribution and is the logical value like TRUE or FALSE.
  • If is TRUE, then this function gives the Cumulative Distribution value and if is FALSE then it gives the Probability Density Function.
  • gives accurate value of the solution.
  • The gamma function is defined by :

.

  • It is for all complex numbers except the negative integers and zero.
  • The Probability Density Function of Gamma function using Shape, rate parameters is:

, for

, where is the natural number(e = 2.71828...), is the number of occurrences of an event, and is the Gamma function.
  • The Standard Gamma Probability Density function is:

.

  • The Cumulative Distribution Function of Gamma is :

, or

for any positive integer .
  • When alpha is a positive integer, then the distribution is called Erlang distribution.
  • If the shape parameter is held fixed, the resulting one-parameter family of distributions is a natural exponential family.
  • For a positive integer , when , , and , GAMMADIST returns (1 - CHIDIST(x)) with degrees of freedom.
  • This function shows the result as error when
1.Any one of the argument is non numeric
2.,  or .

ZOS

  • The syntax is to calculate GAMMADIST in ZOS is .
    • is the value of the distribution,
    • and are the value of the parameters
    • is the logical value like true or false.
    • gives accurate value of the solution.
  • For e.g.,GAMMADIST(10.45,2.8,6.4,TRUE,0.9)

GAMMADIST(10.45,2.8,6.4,FALSE,0.9)

Gamma Distribution

Examples

  1. GAMMADIST(8.15372,5,7,TRUE)=0.006867292
  2. GAMMADIST(20.78542,2,6,TRUE)=0.860283293
  3. GAMMADIST(20.78542,2,6,FALSE)=0.01806997
  4. GAMMADIST(45.6523,9,4,FALSE)=0.019724471
  5. GAMMADIST(8.15372,5,7,TRUE,0.5)= 0.00693316259
  6. GAMMADIST(8.15372,5,7,TRUE,0.9)=0.0067648564

Related Videos

GAMMA Distribution

See Also

References

Gamma Distribution