Difference between revisions of "Manuals/calci/MOORE"

From ZCubes Wiki
Jump to navigation Jump to search
 
(3 intermediate revisions by 2 users not shown)
Line 8: Line 8:
 
*But it is unrelated  to the Moore determinant of a quaternionic Hermitian matrix.  
 
*But it is unrelated  to the Moore determinant of a quaternionic Hermitian matrix.  
 
*The Moore matrix has successive powers of the applied to the first column, so it is an mxn matrix of the form:
 
*The Moore matrix has successive powers of the applied to the first column, so it is an mxn matrix of the form:
<math>\begin{bmatrix}
+
<math>
\alpha_1  & {\alpha_1}^q  &\cdots & {\alpha_1}^q^{n-1}  \\
+
\begin{bmatrix}
\alpha_2  & {\alpha_2}^q  &\cdots & {\alpha_2}^q^{n-1}  \\  
+
\alpha_1  & {\alpha_1}^q  & \cdots & {{\alpha_1}^q}^{n-1}  \\
\alpha_3  & {\alpha_3}^q  &\cdots & {\alpha_3}^q^{n-1}  \\
+
\alpha_2  & {\alpha_2}^q  & \cdots & {{\alpha_2}^q}^{n-1}  \\  
\vdots & \ddots & \vdots \\  
+
\alpha_3  & {\alpha_3}^q  & \cdots & {{\alpha_3}^q}^{n-1}  \\
\alpha_m  & {\alpha_m}^q  &\cdots & {\alpha_m}^q^{n-1} \\
+
\vdots & \vdots & \ddots & \vdots\\  
\end{bmatrix} </math>
+
\alpha_m  & {\alpha_m}^q  & \cdots & {{\alpha_m}^q}^{n-1} \\
 +
\end{bmatrix}
 +
</math>
 
*In calci, MATRIX("moore") is giving the matrixwith the element 1 of order 3.  
 
*In calci, MATRIX("moore") is giving the matrixwith the element 1 of order 3.  
 
*And MATRIX("moore",4,1..4) is giving Moore matrix starting element 1 to 4 of order 4.
 
*And MATRIX("moore",4,1..4) is giving Moore matrix starting element 1 to 4 of order 4.
 +
 +
==Examples==
 +
*1.MATRIX("moore") = 1
 +
*2.MATRIX("moore",3)
 +
{| class="wikitable"
 +
|-
 +
| 1 || 1 || 1
 +
|-
 +
| 1 || 1 || 1
 +
|-
 +
| 1 || 1 || 1
 +
|}
 +
*3.MATRIX("moore",5,1..5)
 +
{| class="wikitable"
 +
|-
 +
| 1 || 1 || 1 || 1 || 1
 +
|-
 +
| 2 || 4 || 16 || 256 || 65536
 +
|-
 +
| 3 || 9 || 81 || 6561 || 43046721
 +
|-
 +
| 4 || 16 || 256 || 65536 || 4294967296
 +
|-
 +
| 5 || 25 || 625 || 390625 || 152587890625
 +
|}
 +
*4.MATRIX("moore",4,3..7,"",2.3)
 +
{| class="wikitable"
 +
|-
 +
| 3 || 12.513502532843182 || 334.1730615222005 || 638460.9005874459
 +
|-
 +
| 4 || 24.251465064166364 || 1530.7256306021752 || 21147737.669320222 
 +
|-
 +
| 5 || 40.51641491731905 || 4983.693475030862 || 319424366.94628483
 +
|-
 +
| 6 || 61.623714938749366 || 13074.350231574774 || 2936069039.087338
 +
|}
 +
 +
==See Also==
 +
*[[Manuals/calci/ANTIDIAGONAL| ANTIDIAGONAL]]
 +
*[[Manuals/calci/CONFERENCE| CONFERENCE]]
 +
*[[Manuals/calci/HANKEL| HANKEL]]
 +
*[[Manuals/calci/HERMITIAN| HERMITIAN]]
 +
 +
==References==
 +
*[http://en.wikipedia.org/wiki/Moore_matrix Moore matrix]

Latest revision as of 01:30, 26 October 2015

MATRIX("MOORE",order)


  • is the size of the Moore matrix.

Description

  • This function gives the moore matrix of order 3 with the element 1.
  • A moore matrix, is a square matrix over a finite field.
  • When moore matrix is a square matrix, then its deteminant is called a Moore determinant.
  • But it is unrelated to the Moore determinant of a quaternionic Hermitian matrix.
  • The Moore matrix has successive powers of the applied to the first column, so it is an mxn matrix of the form:

  • In calci, MATRIX("moore") is giving the matrixwith the element 1 of order 3.
  • And MATRIX("moore",4,1..4) is giving Moore matrix starting element 1 to 4 of order 4.

Examples

  • 1.MATRIX("moore") = 1
  • 2.MATRIX("moore",3)
1 1 1
1 1 1
1 1 1
  • 3.MATRIX("moore",5,1..5)
1 1 1 1 1
2 4 16 256 65536
3 9 81 6561 43046721
4 16 256 65536 4294967296
5 25 625 390625 152587890625
  • 4.MATRIX("moore",4,3..7,"",2.3)
3 12.513502532843182 334.1730615222005 638460.9005874459
4 24.251465064166364 1530.7256306021752 21147737.669320222
5 40.51641491731905 4983.693475030862 319424366.94628483
6 61.623714938749366 13074.350231574774 2936069039.087338

See Also

References