Difference between revisions of "Manuals/calci/REDHEFFER"
Jump to navigation
Jump to search
(One intermediate revision by the same user not shown) | |||
Line 26: | Line 26: | ||
==Examples== | ==Examples== | ||
− | *1.MATRIX("redheffer") | + | *1.MATRIX("redheffer") =1 |
+ | *2.MATRIX("redheffer",3) | ||
{| class="wikitable" | {| class="wikitable" | ||
|- | |- | ||
Line 35: | Line 36: | ||
| 1 || 0 || 1 | | 1 || 0 || 1 | ||
|} | |} | ||
− | * | + | *3.MATRIX("redheffer",6) |
{| class="wikitable" | {| class="wikitable" | ||
|- | |- | ||
Line 56: | Line 57: | ||
*[[Manuals/calci/CIRCULANT| CIRCULANT]] | *[[Manuals/calci/CIRCULANT| CIRCULANT]] | ||
*[[Manuals/calci/HANKEL| HANKEL]] | *[[Manuals/calci/HANKEL| HANKEL]] | ||
− | |||
==References== | ==References== | ||
+ | *[http://en.wikipedia.org/wiki/Redheffer_matrix Redheffer Matrix] |
Latest revision as of 02:37, 26 October 2015
MATRIX("REDHEFFER",order)
- is the size of the Redheffer matrix.
Description
- This function gives the redheffer matrix of order 3.
- A Redheffer matrix is a square (0,1) -matrix with elements equal to 1 if j=1 or i/j (i divides j), and 0 otherwise. *For n=1, 2, ..., The first few Redheffer matrices are
- The determinant of the n×n Redheffer matrix is equal to the Mertens function M(n).
Examples
- 1.MATRIX("redheffer") =1
- 2.MATRIX("redheffer",3)
1 | 1 | 1 |
1 | 1 | 0 |
1 | 0 | 1 |
- 3.MATRIX("redheffer",6)
1 | 1 | 1 | 1 | 1 | 1 |
1 | 1 | 0 | 1 | 0 | 1 |
1 | 0 | 1 | 0 | 0 | 1 |
1 | 0 | 0 | 1 | 0 | 0 |
1 | 0 | 0 | 0 | 1 | 0 |
1 | 0 | 0 | 0 | 0 | 1 |