Difference between revisions of "Manuals/calci/IMABS"

From ZCubes Wiki
Jump to navigation Jump to search
 
(One intermediate revision by the same user not shown)
Line 2: Line 2:
  
 
*<math>ComplexNumber</math> is of the form <math>x+iy</math>
 
*<math>ComplexNumber</math> is of the form <math>x+iy</math>
 +
**IMABS(),returns the absolute value (modulus) of a complex number
  
 
==Description==
 
==Description==
Line 20: Line 21:
  
 
*IMABS("6+8i") = <math>\sqrt{6^2+8^2}</math> = <math>\sqrt{100}</math> = 10
 
*IMABS("6+8i") = <math>\sqrt{6^2+8^2}</math> = <math>\sqrt{100}</math> = 10
*IMABS("5-7i") = <math>\sqrt{74}</math> = 8.60232
+
*IMABS("5-7i") = <math>\sqrt{74}</math> = 8.602325267042627
*IMABS("-3-5i")= <math>\sqrt{34}</math> = 5.83095
+
*IMABS("-3-5i")= <math>\sqrt{34}</math> = 5.830951894845301
  
 
==Related Videos==
 
==Related Videos==

Latest revision as of 03:07, 23 October 2020

IMABS(ComplexNumber)


  • is of the form
    • IMABS(),returns the absolute value (modulus) of a complex number

Description

  • This function gives the absolute value of a complex number of the form .
  • Complex number , where & are real numbers and is the imaginary unit .
  • A complex number's absolute value is measured from zero on the complex number plane.
  • We can use COMPLEX function to convert real and imaginary number into a complex number.
  • The absolute value of a complex number is:

ZOS

  • The syntax is to calculate IMABS in ZOS is .
    • is of the form .
    • For e.g.,IMABS("5-7i")+IMABS("6+4i")
Absolute Value of Imaginary Number

Examples

  • IMABS("6+8i") = = = 10
  • IMABS("5-7i") = = 8.602325267042627
  • IMABS("-3-5i")= = 5.830951894845301

Related Videos

Absolute Value of a Complex Number

See Also

References

Absolute Value