Difference between revisions of "Manuals/calci/EIGENVALUES"

From ZCubes Wiki
Jump to navigation Jump to search
 
(5 intermediate revisions by 2 users not shown)
Line 5: Line 5:
 
*This function shows the Eigen value of the given matrix.
 
*This function shows the Eigen value of the given matrix.
 
*In <math>EIGENVALUES (Matrix)</math>,<math>Matrix</math> is any matrix values.
 
*In <math>EIGENVALUES (Matrix)</math>,<math>Matrix</math> is any matrix values.
*In linear algebra,an eigen vector or characteristic vector of a linear transformation is a non-zero vector whose direction does not change when that linear transformation is applied to it.
+
*In linear algebra, an eigen vector or characteristic vector of a linear transformation is a non-zero vector whose direction does not change when that linear transformation is applied to it.
 
*Let A be a linear transformation represented by a matrix A.
 
*Let A be a linear transformation represented by a matrix A.
*Let A is an nxn matrix,v is a non zero nx1 vector and <math>\lambda</math> is a scalar which may be either real or complex.
+
*Let A is an nxn matrix, v is a non zero nx1 vector and <math>\lambda</math> is a scalar which may be either real or complex.
 
*Any value of <math>\lambda</math> for which this equation has a solution is known as an eigenvalue of the matrix A.   
 
*Any value of <math>\lambda</math> for which this equation has a solution is known as an eigenvalue of the matrix A.   
 
*It is sometimes also called the characteristic value.   
 
*It is sometimes also called the characteristic value.   
Line 35: Line 35:
 
|-
 
|-
 
|
 
|
  -2.018987498930866  25.303239119591886   5.715748379338994
+
  -2.018987498930866
 +
||
 +
  25.303239119591886  
 +
||
 +
5.715748379338994
 
|-
 
|-
| -0.8195524172935329 0.3557792393359474 0.2128903683040517  
+
||
|| 0.5726193656991498 0.663334322125492   0.6212592923173481
+
-0.8195524172935329 0.3557792393359474 0.2128903683040517  
|| 0.02099755544415341 0.6583378387635402 -0.7541316747045657  
+
||  
 +
0.5726193656991498 0.663334322125492 0.6212592923173481
 +
||
 +
  0.02099755544415341 0.6583378387635402 -0.7541316747045657  
 
|}
 
|}
  
Line 54: Line 61:
 
|}
 
|}
 
=EIGENVALUES(A1:B2)
 
=EIGENVALUES(A1:B2)
{| class="wikitable"
+
{| border="1" cellpadding="5" cellspacing="0"
|+Result
 
 
|-
 
|-
| -13.862780491200214 || 7.8627804912002155
+
|
 +
-13.862780491200214  
 +
||
 +
7.8627804912002155
 
|-
 
|-
| 0.3031213645114406 0.9025310769284506
+
|  
||  -0.9529519601620652 0.43062472662211493
+
0.3031213645114406 0.9025310769284506
 +
||
 +
  -0.9529519601620652 0.43062472662211493
 
|}
 
|}
 +
 +
==Related Videos==
 +
 +
{{#ev:youtube|v=PhfbEr2btGQ|280|center|Eigen Values}}
  
 
==See Also==
 
==See Also==

Latest revision as of 14:58, 25 April 2019

EIGENVALUES (Matrix)


  • is the array of numeric elements.

Description

  • This function shows the Eigen value of the given matrix.
  • In , is any matrix values.
  • In linear algebra, an eigen vector or characteristic vector of a linear transformation is a non-zero vector whose direction does not change when that linear transformation is applied to it.
  • Let A be a linear transformation represented by a matrix A.
  • Let A is an nxn matrix, v is a non zero nx1 vector and is a scalar which may be either real or complex.
  • Any value of for which this equation has a solution is known as an eigenvalue of the matrix A.
  • It is sometimes also called the characteristic value.
  • The vector, v, which corresponds to this value is called an eigenvector.
  • The eigenvalue problem can be rewritten as .
  • If v is non-zero, this equation will only have a solution if .
  • This equation is called the characteristic equation of A, and is an nth order polynomial in with n roots.
  • These roots are called the eigenvalues of A.

Examples

Spreadsheet
A B C
1 3 7 5
2 10 12 8
3 6 8 14

=EIGENVALUES(A1:C3)

-2.018987498930866
25.303239119591886 
5.715748379338994
-0.8195524172935329 0.3557792393359474 0.2128903683040517 
0.5726193656991498 0.663334322125492 0.6212592923173481
 0.02099755544415341 0.6583378387635402 -0.7541316747045657 
Spreadsheet
A B
1 5 6
2 9 -11

=EIGENVALUES(A1:B2)

-13.862780491200214 
7.8627804912002155
0.3031213645114406 0.9025310769284506
-0.9529519601620652 0.43062472662211493

Related Videos

Eigen Values

See Also

References