Difference between revisions of "Manuals/calci/GROWTH"

From ZCubes Wiki
Jump to navigation Jump to search
(Created page with "<div id="6SpaceContent" class="zcontent" align="left"> <font size="3"><font face="Times New Roman">'''GROWTH (N1, N2, n and C) in the relationship y = b*m^x'''</font></font...")
 
 
(17 intermediate revisions by 4 users not shown)
Line 1: Line 1:
<div id="6SpaceContent" class="zcontent" align="left">
+
<div style="font-size:30px">'''GROWTH (KnownYs,KnownXs,NewXs,ForceConst)'''</div><br/>
 +
*<math>KnownYs</math> is the set of y values.
 +
*<math>KnownXs</math> is the set of x values.
 +
*<math>NewXs</math> is the new x value.
 +
*<math>ForceConst</math> is the constant value.
 +
**GROWTH(), returns data stored in a PivotTable.
  
<font size="3"><font face="Times New Roman">'''GROWTH (N1, N2, n and C) in the relationship y = b*m^x'''</font></font>
 
  
'''Where N1 is the set of y values, N2 is the set of x values, n is the new x values to the particular y values and C is the constant whether to force the constant b to equal 1'''
+
==Description==
 +
*This function calculates an exponential trend of the <math> KnownYs</math> values for  <math> NewXs</math> values by using given <math> KnownYs</math> and <math> KnownXs</math> values.
 +
*Growth rate is a financial term used to describe a method of projecting the rate of return on a given investment over a period of time.
 +
*In <math>GROWTH (KnownYs,KnownXs,NewXs,ForceConst)</math>, <math>KnownYs </math> is the set of <math>y</math> values used to predict the exponential growth, <math> KnownXs</math> is the set of <math> x</math> values used to predict the exponential growth,  
 +
*<math> NewXs</math> is the set of new x-values, for which the function calculates corresponding new y-values and <math>ForceConst</math> is the constant. It is either a TRUE or FALSE.
 +
*When <math> ForceConst</math> value is TRUE, then the constant value is calculated normally. When <math> c</math> value is FALSE, then the constant is set to 1. 
 +
*Here  <math> KnownYs</math> value is required. <math> KnownXs,NewXs</math> and <math>ForceConst</math> is optional.
 +
*If <math>KnownXs</math> value is omitted, then it is assumed to be the array{1,2,3..} which is the same size of <math>KnownYs</math>.
 +
*If  <math>NewXs</math> value is omitted, then it is assumed to be the same size of <math>KnownXs</math>.
 +
*If both <math> KnownXs</math> and <math> NewXs</math> are omitted, then they are assumed to be the array {1,2,3..} which is the same size of <math> KnownYs</math>.
 +
*Also <math> KnownXs</math> and <math> KnownYs</math> values is the set of values with the relationship <math>y=b*mx</math>.
 +
*When entering an array constant for an argument such as <math>KnownXs</math>, use commas to separate values in the same row and semicolons to separate rows. 
 +
*This function will return the result as error when any one of the value in <math>KnownYs</math> value is 0 or negative.
  
'''b is calculated normally when C is TRUE and is equal to 1 when C is FALSE.'''
+
==Examples==
 +
       
  
</div>
+
{| class="wikitable"
----
+
|+Spreadsheet
<div id="1SpaceContent" class="zcontent" align="left">
+
|-
 +
! !! A !! B !! C !! D !! E
 +
|-
 +
! 1
 +
| 2001 || 2002 ||2003 ||2004 ||2005 
 +
|-
 +
! 2
 +
| 1000000  || 1100000 || 1252000  ||1375000 ||1500000
  
<font size="3" face="Times New Roman"> </font>
+
|}
 
+
#GROWTH(A1:E1,A2:E2) = 2001.0811609385346  2001.862658527073  2003.0511194284027  2004.0133509635207    2004.991702115926
Growth calculates an exponential trend of the y-values for new x-values by using the given x-values and y-values.
 
 
 
</div>
 
----
 
<div id="7SpaceContent" class="zcontent" align="left">
 
 
 
* <font size="3" face="Times New Roman"> After selecting the correct number of cells, the formulas which calculate the arrays should be entered as array formulas. Use commas to separate the values in the same row and semicolons to separate rows. </font>
 
 
 
</div>
 
----
 
<div id="12SpaceContent" class="zcontent" align="left"><div class="ZEditBox" align="left">
 
 
 
GROWTH
 
 
 
</div></div>
 
----
 
<div id="8SpaceContent" class="zcontent" align="left">
 
 
 
Lets see an example,
 
 
 
B                  C
 
 
 
22               45000
 
  
23               52000
+
==Related Videos==
  
24               67000
+
{{#ev:youtube|fp5yFpzAJ7g|280|center|GROWTH}}
  
25             115000
+
==See Also==
  
26             165000
+
*[[Manuals/calci/LOGEST| LOGEST]]
 +
*[[Manuals/calci/LINEST| LINEST]]
 +
*[[Manuals/calci/TREND| TREND]]
  
27             225000
+
==References==
 +
*[http://en.wikipedia.org/wiki/Exponential_growth Growth]
  
28
 
  
29
 
  
<nowiki>=GROWTH(C2:C7,B2:B7,B8:B9) is 322408.3667 and 458726.12691</nowiki>
 
  
</div>
+
*[[Z_API_Functions | List of Main Z Functions]]
----
 
<div id="10SpaceContent" class="zcontent" align="left"><div class="ZEditBox" align="justify">Syntax </div><div class="ZEditBox"><center></center></div></div>
 
----
 
<div id="4SpaceContent" class="zcontent" align="left"><div class="ZEditBox" align="justify">Remarks </div></div>
 
----
 
<div id="3SpaceContent" class="zcontent" align="left"><div class="ZEditBox" align="justify">Examples </div></div>
 
----
 
<div id="11SpaceContent" class="zcontent" align="left"><div class="ZEditBox" align="justify">Description </div></div>
 
----
 
<div id="2SpaceContent" class="zcontent" align="left">
 
 
 
{| id="TABLE3" class="SpreadSheet blue"
 
|- class="even"
 
| class="    " |
 
| class="  " | Column1
 
| class="  " | Column2
 
| class="  " | Column3
 
| class="  " | Column4
 
|- class="odd"
 
| class=" " | Row1
 
| class="sshl_f " | 22
 
| class="sshl_f " | 45000
 
| class="sshl_f" | 322408.3667147927,458726.1269057352
 
| class=" " |
 
|- class="even"
 
| class="  " | Row2
 
| class="sshl_f" | 23
 
| class="sshl_f" | 52000
 
|
 
| class="sshl_f" |
 
|- class="odd"
 
| Row3
 
| class="sshl_f" | 24
 
| class="sshl_f" | 67000
 
| class="sshl_f" |
 
| class="sshl_f" |
 
|- class="even"
 
| Row4
 
| class="sshl_f" | 25
 
| class="sshl_f" | 115000
 
| class="sshl_f" |
 
| class="sshl_f" |
 
|- class="odd"
 
| class="sshl_f" | Row5
 
| class="sshl_f" | 26
 
| class="sshl_f" | 165000
 
| class="sshl_f  " |
 
| class="sshl_f  " |
 
|- class="even"
 
| class="sshl_f" | Row6
 
| class="SelectTD" | 27
 
| class=" " | 225000
 
| class="sshl_f" |
 
| class="sshl_f" |
 
|- class="odd"
 
| class="sshl_f" | Row7
 
| class="  " | 28
 
| class="sshl_f" |
 
| class="sshl_f" |
 
| class="sshl_f" |
 
|- class="even"
 
| class="sshl_f" | Row8
 
| class="  " | 29
 
| class="sshl_f" |
 
| class="sshl_f" |
 
| class="sshl_f" |
 
|}
 
  
<div align="left">[[Image:calci1.gif]]</div></div>
+
*[[ Z3 |  Z3 home ]]
----
 

Latest revision as of 16:08, 10 August 2018

GROWTH (KnownYs,KnownXs,NewXs,ForceConst)


  • Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle KnownYs} is the set of y values.
  • Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle KnownXs} is the set of x values.
  • Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle NewXs} is the new x value.
  • Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle ForceConst} is the constant value.
    • GROWTH(), returns data stored in a PivotTable.


Description

  • This function calculates an exponential trend of the Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle KnownYs} values for Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle NewXs} values by using given Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle KnownYs} and Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle KnownXs} values.
  • Growth rate is a financial term used to describe a method of projecting the rate of return on a given investment over a period of time.
  • In Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle GROWTH (KnownYs,KnownXs,NewXs,ForceConst)} , Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle KnownYs } is the set of Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle y} values used to predict the exponential growth, Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle KnownXs} is the set of Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x} values used to predict the exponential growth,
  • Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle NewXs} is the set of new x-values, for which the function calculates corresponding new y-values and Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle ForceConst} is the constant. It is either a TRUE or FALSE.
  • When Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle ForceConst} value is TRUE, then the constant value is calculated normally. When Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle c} value is FALSE, then the constant is set to 1.
  • Here Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle KnownYs} value is required. Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle KnownXs,NewXs} and Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle ForceConst} is optional.
  • If Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle KnownXs} value is omitted, then it is assumed to be the array{1,2,3..} which is the same size of Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle KnownYs} .
  • If Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle NewXs} value is omitted, then it is assumed to be the same size of Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle KnownXs} .
  • If both Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle KnownXs} and Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle NewXs} are omitted, then they are assumed to be the array {1,2,3..} which is the same size of Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle KnownYs} .
  • Also Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle KnownXs} and Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle KnownYs} values is the set of values with the relationship Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle y=b*mx} .
  • When entering an array constant for an argument such as Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle KnownXs} , use commas to separate values in the same row and semicolons to separate rows.
  • This function will return the result as error when any one of the value in Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle KnownYs} value is 0 or negative.

Examples

Spreadsheet
A B C D E
1 2001 2002 2003 2004 2005
2 1000000 1100000 1252000 1375000 1500000
  1. GROWTH(A1:E1,A2:E2) = 2001.0811609385346 2001.862658527073 2003.0511194284027 2004.0133509635207 2004.991702115926

Related Videos

GROWTH

See Also

References