Difference between revisions of "Manuals/calci/HARMEAN"
(Created page with "<div id="6SpaceContent" class="zcontent" align="left"> <font size="3"><font face="Times New Roman">'''HARMEAN''' (N'''1''', N2...)</font></font> <font size="3"><font fac...") |
|||
| (27 intermediate revisions by 4 users not shown) | |||
| Line 1: | Line 1: | ||
| − | <div | + | <div style="font-size:30px">'''HARMEAN()'''</div><br/> |
| + | *Parameters are any set of positive real numbers. | ||
| + | **HARMEAN(), returns values along an exponential trend. | ||
| − | < | + | ==Description== |
| + | *This function gives the Harmonic Mean of a given set of numbers. | ||
| + | *Harmonic mean is used to calculate the average of a set of numbers. | ||
| + | *The Harmonic mean is always the lowest mean. | ||
| + | *Normally <math>Harmonic mean < Geometric mean < Arithmetic mean</math> | ||
| + | *Harmonic mean is defined as the reciprocal of the arithmetic mean by the reciprocals of a specified set of numbers. | ||
| + | *The harmonic mean of a positive real numbers <math>x_1,x_2,x_3....x_n > 0</math> is defined by : | ||
| + | <math>H=\frac {n}{(1/x_1+1/x_2+...+1/x_n)} </math> | ||
| + | ie | ||
| + | :<math> H=\frac{n}{\sum_{i=1}^{n} \frac{1}{xi}}</math>. | ||
| + | *In <math>HARMEAN(),</math> Parameters are any positive real numbers, and here First Parameter is required. From the second parameter are optional. | ||
| + | *Also arguments can be numbers,names, arrays or references that contain numbers. | ||
| + | *We can give logical values and text representations of numbers directly. | ||
| + | *Suppose the arguments contains any text, logical values or empty cells like that values are ignored. | ||
| + | *This will give the result as error when | ||
| + | 1.The arguments with the error values or the referred text couldn't translated in to numbers. | ||
| + | 2.Also any data <math>point \le 0</math>. | ||
| − | < | + | ==ZOS== |
| + | *The syntax is to calculate HARMEAN in ZOS is <math>HARMEAN()</math>. | ||
| + | **Parameters are any set of positive real numbers. | ||
| + | *For e.g.,HARMEAN(20..30,11..15,45.1..56.1..0.5) | ||
| + | {{#ev:youtube|oHiCLVUJz-4|280|center|Harmonic Mean}} | ||
| − | + | ==Examples== | |
| − | |||
| − | |||
| − | + | #=HARMEAN(1,2,3,4,5) = 2.18978102189781 | |
| + | #=HARMEAN(20,25,32,41) = 27.4649361523969 | ||
| + | #=HARMEAN(0.25,5.4,3.7,10.1,15.2) = 1.0821913906985883 | ||
| + | #=HARMEAN(3,5,0,2) = #N/A (NUMBER > 0 REQUIRED) | ||
| + | #=HARMEAN(1,-2,4) = #N/A (NUMBER > 0 REQUIRED) | ||
| − | + | ==Related Videos== | |
| − | |||
| − | |||
| − | + | {{#ev:youtube|X3nQMiBK9rc|280|center|Harmonic Mean}} | |
| − | + | ==See Also== | |
| + | *[[Manuals/calci/AVERAGE | AVERAGE ]] | ||
| + | *[[Manuals/calci/GEOMEAN | GEOMEAN ]] | ||
| − | + | ==References== | |
| + | [http://en.wikipedia.org/wiki/Harmonic_mean Harmonic mean] | ||
| − | |||
| − | |||
| − | + | *[[Z_API_Functions | List of Main Z Functions]] | |
| − | + | *[[ Z3 | Z3 home ]] | |
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | | | ||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
Latest revision as of 04:03, 12 August 2020
HARMEAN()
- Parameters are any set of positive real numbers.
- HARMEAN(), returns values along an exponential trend.
Description
- This function gives the Harmonic Mean of a given set of numbers.
- Harmonic mean is used to calculate the average of a set of numbers.
- The Harmonic mean is always the lowest mean.
- Normally
- Harmonic mean is defined as the reciprocal of the arithmetic mean by the reciprocals of a specified set of numbers.
- The harmonic mean of a positive real numbers is defined by :
ie
- .
- In Parameters are any positive real numbers, and here First Parameter is required. From the second parameter are optional.
- Also arguments can be numbers,names, arrays or references that contain numbers.
- We can give logical values and text representations of numbers directly.
- Suppose the arguments contains any text, logical values or empty cells like that values are ignored.
- This will give the result as error when
1.The arguments with the error values or the referred text couldn't translated in to numbers.
2.Also any data .
ZOS
- The syntax is to calculate HARMEAN in ZOS is .
- Parameters are any set of positive real numbers.
- For e.g.,HARMEAN(20..30,11..15,45.1..56.1..0.5)
Examples
- =HARMEAN(1,2,3,4,5) = 2.18978102189781
- =HARMEAN(20,25,32,41) = 27.4649361523969
- =HARMEAN(0.25,5.4,3.7,10.1,15.2) = 1.0821913906985883
- =HARMEAN(3,5,0,2) = #N/A (NUMBER > 0 REQUIRED)
- =HARMEAN(1,-2,4) = #N/A (NUMBER > 0 REQUIRED)
Related Videos
See Also
References