Difference between revisions of "Manuals/calci/TTESTEQUALVARIANCES"
(Created page with "<div id="6SpaceContent" class="zcontent" align="left"> '''TTESTTWOSAMPLESEQUALVARIANCES('''Array1, Array2, HypothesizeDiff, Alpha, NewTableFlag) where, '''Array1 '''...") |
|||
| (15 intermediate revisions by 3 users not shown) | |||
| Line 1: | Line 1: | ||
| − | <div | + | <div style="font-size:30px">'''TTESTTWOSAMPLESEQUALVARIANCES(ar1,ar2,md,alpha,lv)'''</div><br/> |
| + | *<math>ar1 </math> and <math> ar2 </math> are set of values. | ||
| + | *<math>md </math> is the Hypothesized Mean Difference. | ||
| + | *<math> alpha </math> is the significance level. | ||
| + | *<math> lv </math> is the logical value. | ||
| − | + | ==Description== | |
| + | *This function calculating the two Sample for equal variances determines whether two sample means are equal. | ||
| + | *We can use this test when both: | ||
| + | *1.The two sample sizes are equal; | ||
| + | *2.It can be assumed that the two distributions have the same variance. | ||
| + | *In <math>TTESTTWOSAMPLESEQUALVARIANCES(ar1,ar2,md,alpha,lv)</math>, <math>ar1 </math> and <math> ar2 </math> are two arrays of sample values. <math> md </math> is the Hypothesized Mean Difference . | ||
| + | *Suppose md=0 which indicates that sample means are hypothesized to be equal. | ||
| + | *<math> alpha </math> is the significance level which ranges from 0 to 1. | ||
| + | *<math> lv </math> is the logical value like TRUE or FALSE. | ||
| + | *TRUE is indicating the result will display in new worksheet.Suppose we are omitted the lv value it will consider the value as FALSE. | ||
| + | *The t statistic of this function calculated by: | ||
| + | <math>t = \frac{\bar{x_1}-\bar{x_2}}{s_{x1}.s_{x2}.\sqrt{\frac{2}{n}}}</math> | ||
| + | where <math>s_{x1}.s_{x2} = \sqrt{\frac{1}{2}(s_{x1}^2+s_{x2}^2)}</math> | ||
| + | *Here <math>s_{x1}</math> and <math>s_{x2}</math> are unbiased estimators of the variances of two samples.<math>s_{x1}.s_{x2}</math> is the grand standard deviation data 1 and data2 and n is the data points of two data set. | ||
| + | *This function will give the result as error when | ||
| + | 1.any one of the argument is non-numeric. | ||
| + | 2.alpha>1 | ||
| + | 3.<math>ar1 </math> and <math> ar2 </math> are having different number of data points. | ||
| − | + | ==Examples== | |
| + | {| class="wikitable" | ||
| + | |+Spreadsheet | ||
| + | |- | ||
| + | ! !! A !! B !! C !! D!! E !! F | ||
| + | |- | ||
| + | ! 1 | ||
| + | | 10 || 15 || 18 || 27 || 12 || 34 | ||
| + | |- | ||
| + | ! 2 | ||
| + | | 17 || 20 || 25 || 39 || 9 || 14 | ||
| + | |} | ||
| − | + | #=TTESTTWOSAMPLESEQUALVARIANCES(A1:F1,A2:F2,2,0.5) | |
| − | + | {| class="wikitable" | |
| − | + | |+Result | |
| − | + | |- | |
| − | + | ! !! Variable 1 !! Variable 2 | |
| − | + | |- | |
| − | + | ! Mean | |
| − | + | | 19.333333333333332 || 20.666666666666668 | |
| − | - | + | |- |
| − | + | ! Variance | |
| − | + | | 87.06666666666666 || 109.86666666666667 | |
| − | + | |- | |
| − | + | ! Observations | |
| − | + | | 6 || 6 | |
| − | + | |- | |
| − | + | ! Pooled Variance | |
| − | + | | 98.46666666666667 | |
| − | + | |- | |
| − | + | ! Hypothesized Mean Difference | |
| − | + | | 2 | |
| − | + | |- | |
| − | + | ! Degree Of Freedom | |
| − | + | | 10 | |
| − | + | |- | |
| − | + | ! T- Statistics | |
| − | + | | -0.5818281835787091 | |
| − | + | |- | |
| − | T- | + | ! P(T<=t) One-tail |
| − | + | | 0.28678199670723614 | |
| − | + | |- | |
| − | + | ! T Critical One-Tail | |
| − | < | + | | 0 |
| − | + | |- | |
| − | + | ! P(T<=t) Two-tail | |
| − | -- | + | | 0.5735639934144723 |
| − | + | |- | |
| − | + | ! T Critical Two-Tail | |
| − | < | + | | 0.6998120613365443 |
| − | + | |} | |
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | + | ==Related Videos== | |
| − | |||
| − | |||
| − | { | + | {{#ev:youtube|OHHhzLHakKA|280|center|TTESTEQUALVARIANCES}} |
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | | | ||
| − | |} | ||
| − | + | ==See Also== | |
| − | + | *[[Manuals/calci/TTEST | TTEST ]] | |
| − | + | *[[Manuals/calci/TDIST | TDIST ]] | |
| − | + | *[[Manuals/calci/TINV | TINV ]] | |
| − | + | *[[Manuals/calci/TTESTUNEQUALVARIANCES | TTESTUNEQUALVARIANCES ]] | |
| − | |||
| − | | | ||
| − | |||
| − | |||
| − | |||
| − | | | ||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | + | ==References== | |
| − | + | *[http://en.wikipedia.org/wiki/Student%27s_t-test Student's t-distribution] | |
Latest revision as of 13:03, 2 July 2015
TTESTTWOSAMPLESEQUALVARIANCES(ar1,ar2,md,alpha,lv)
- and are set of values.
- is the Hypothesized Mean Difference.
- is the significance level.
- is the logical value.
Description
- This function calculating the two Sample for equal variances determines whether two sample means are equal.
- We can use this test when both:
- 1.The two sample sizes are equal;
- 2.It can be assumed that the two distributions have the same variance.
- In , and are two arrays of sample values. is the Hypothesized Mean Difference .
- Suppose md=0 which indicates that sample means are hypothesized to be equal.
- is the significance level which ranges from 0 to 1.
- is the logical value like TRUE or FALSE.
- TRUE is indicating the result will display in new worksheet.Suppose we are omitted the lv value it will consider the value as FALSE.
- The t statistic of this function calculated by:
where
- Here and are unbiased estimators of the variances of two samples. is the grand standard deviation data 1 and data2 and n is the data points of two data set.
- This function will give the result as error when
1.any one of the argument is non-numeric. 2.alpha>1 3. and are having different number of data points.
Examples
| A | B | C | D | E | F | |
|---|---|---|---|---|---|---|
| 1 | 10 | 15 | 18 | 27 | 12 | 34 |
| 2 | 17 | 20 | 25 | 39 | 9 | 14 |
- =TTESTTWOSAMPLESEQUALVARIANCES(A1:F1,A2:F2,2,0.5)
| Variable 1 | Variable 2 | |
|---|---|---|
| Mean | 19.333333333333332 | 20.666666666666668 |
| Variance | 87.06666666666666 | 109.86666666666667 |
| Observations | 6 | 6 |
| Pooled Variance | 98.46666666666667 | |
| Hypothesized Mean Difference | 2 | |
| Degree Of Freedom | 10 | |
| T- Statistics | -0.5818281835787091 | |
| P(T<=t) One-tail | 0.28678199670723614 | |
| T Critical One-Tail | 0 | |
| P(T<=t) Two-tail | 0.5735639934144723 | |
| T Critical Two-Tail | 0.6998120613365443 |