Difference between revisions of "Manuals/calci/IMEXP"

From ZCubes Wiki
Jump to navigation Jump to search
Line 6: Line 6:
 
*Euler's formula states that <math>e^{ix}= cosx+isinx</math>, for any real number <math>x</math> and <math>e</math> is the base of the natural logarithm.
 
*Euler's formula states that <math>e^{ix}= cosx+isinx</math>, for any real number <math>x</math> and <math>e</math> is the base of the natural logarithm.
 
*The approximate  value of the constant e=2.718281828459045 and it is equal to <math>e^1</math>.                                                  So the exponential of a complex number is : <math>IMEXP(z) = e^z = e^{x+iy} = e^{x}.e^{iy} = e^{x}.(cosy+isiny)=e^x.cosy+ie^x.siny</math>.
 
*The approximate  value of the constant e=2.718281828459045 and it is equal to <math>e^1</math>.                                                  So the exponential of a complex number is : <math>IMEXP(z) = e^z = e^{x+iy} = e^{x}.e^{iy} = e^{x}.(cosy+isiny)=e^x.cosy+ie^x.siny</math>.
*When  imaginary part is '0', it will give the exponent value of the real number. i.e IMEXP(z) = EXP(z) when imaginary number (iy) is '0'.  
+
*When  imaginary part is '0', it will give the exponent value of the real number. i.e <math>IMEXP(z) = EXP(z)</math> when imaginary number <math>iy</math> is '0'.  
 
*We can use COMPLEX function to convert the real and imaginary coefficients to a complex number.
 
*We can use COMPLEX function to convert the real and imaginary coefficients to a complex number.
  

Revision as of 05:13, 25 November 2013

IMEXP(z)


  • where Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle z} is the complex number.

Description

  • This function gives the exponential of a complex number.
  • In Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle IMEXP(z)} , Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle z} is the complex number of the form Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle z=x+iy} , Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x} &Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle y} are real numbers & is the imaginary unit. Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle i=\sqrt{-1}} .
  • Euler's formula states that Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle e^{ix}= cosx+isinx} , for any real number Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x} and Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle e} is the base of the natural logarithm.
  • The approximate value of the constant e=2.718281828459045 and it is equal to Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle e^1} . So the exponential of a complex number is : Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle IMEXP(z) = e^z = e^{x+iy} = e^{x}.e^{iy} = e^{x}.(cosy+isiny)=e^x.cosy+ie^x.siny} .
  • When imaginary part is '0', it will give the exponent value of the real number. i.e Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle IMEXP(z) = EXP(z)} when imaginary number is '0'.
  • We can use COMPLEX function to convert the real and imaginary coefficients to a complex number.

Examples

  1. IMEXP("2+3i")=-7.315110094901102+1.0427436562359i
  2. IMEXP("4-5i")=15.4874305606508+52.355491418482i
  3. IMEXP("6")=403.428793492735
  4. IMEXP("2i")=-0.416146836547142+0.909297426825682i
  5. IMEXP("0")=1 andIMEXP("0i")=1

See Also

References

Exponential function