Difference between revisions of "Manuals/calci/IMPOWER"

From ZCubes Wiki
Jump to navigation Jump to search
Line 15: Line 15:
 
==Examples==
 
==Examples==
  
#IMPOWER("4+5i",3)=-235.99999+115i
+
#=IMPOWER("4+5i",3) = -235.99999+115i
#IMPOWER("9-7i",4)=-14852-8063.999999i
+
#=IMPOWER("9-7i",4) = -14852-8063.999999i
#IMPOWER("6",9)=10077696
+
#=IMPOWER("6",9) = 10077696
#IMPOWER("i",10)=-1+6.1257422745431E-16i
+
#=IMPOWER("i",10) = -1+6.1257422745431E-16i
  
 
==See Also==
 
==See Also==

Revision as of 22:44, 19 December 2013

IMPOWER(z,n)


  • Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle z} is the complex number is of the form Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x+iy}
  • Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle n} is the power value.

Description

  • This function gives the value of powers of complex number.
  • DeMoivre's Theorem is a generalized formula to compute powers of a complex number in it's polar form.
  • i'is the imaginary unit, Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle i=\sqrt{-1}}
  • Then the power of a complex number is defined by Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (z)^n=(x+iy)^n=r^n*e^{in\theta}=r^n(cosn\theta+isinn\theta)} where Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r=\sqrt{x^2+y^2}} . and Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \theta=tan^-1(y/x)} , Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \theta∈(-\pi,\pi]} .
  • This formula is called DeMoivre's theorem of complex numbers.
  • We can use COMPLEX function to convert real and imaginary number in to a complex number.
  • In IMPOWER(z,n), Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle n} can be integer, fractional or negative.
  • If Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle n} is non-numeric, function will return error value.

Examples

  1. =IMPOWER("4+5i",3) = -235.99999+115i
  2. =IMPOWER("9-7i",4) = -14852-8063.999999i
  3. =IMPOWER("6",9) = 10077696
  4. =IMPOWER("i",10) = -1+6.1257422745431E-16i

See Also

References

Binary Logarithm