Difference between revisions of "Manuals/calci/UNIFORM"

From ZCubes Wiki
Jump to navigation Jump to search
Line 10: Line 10:
 
*In <math>UNIFORMDISTRIBUTED(x,ll,ul)</math> ,<math> x </math> is the numeric value to find the probability of the distribution, <math>ll </math> is the lower limit value and <math> ul </math> is the upper limit value.
 
*In <math>UNIFORMDISTRIBUTED(x,ll,ul)</math> ,<math> x </math> is the numeric value to find the probability of the distribution, <math>ll </math> is the lower limit value and <math> ul </math> is the upper limit value.
 
*The Probability Density Function of the uniform distribution for the interval(a,b) is given by:  
 
*The Probability Density Function of the uniform distribution for the interval(a,b) is given by:  
P(x)=<math>\begin{cases}  0, &for &x<a \\
+
P(x)=<math>\begin{cases}  0, &for & x < a \\
                     1/b-a, &for &a<&x<b \\
+
                     1/b-a, &for & a < x < b \\
                     0,    &for &x>b  
+
                     0,    &for & x > b  
 
                     \end{cases}</math>
 
                     \end{cases}</math>
  

Revision as of 00:28, 11 February 2014

UNIFORMDISTRIBUTED(x,ll,ul)


  • is the value of the function.
  • is the lower limit.
  • is the upper limit of the function.

Description

  • This function gives the probability of the uniform distribution.
  • Uniform distribution is a symmetric probability distribution.
  • It is also called rectangular distribution.
  • In , is the numeric value to find the probability of the distribution, is the lower limit value and is the upper limit value.
  • The Probability Density Function of the uniform distribution for the interval(a,b) is given by:

P(x)=

equation

  • The Lucas numbers are defined by:

Examples

  1. UNIFORMDISTRIBUTED(4,2,3) = 4030484680552036 2.6280935418326408 2.2810050058178604 2.97846262995153679
  2. UNIFORMDISTRIBUTED(5,3,6) = 5.522187389200553 3.566177821950987 5.04674904467538 5.301322509767488 4.9094569575972855

See Also

References