Difference between revisions of "Manuals/calci/HADAMARD"
Jump to navigation
Jump to search
| Line 26: | Line 26: | ||
1 & -1 & -1 & 1\\ | 1 & -1 & -1 & 1\\ | ||
\end{bmatrix}</math> | \end{bmatrix}</math> | ||
| + | |||
| + | ==Examples== | ||
| + | #MATRIX("hadamard") | ||
| + | {| class="wikitable" | ||
| + | |- | ||
| + | | 1 || 1 || 1 || 1 | ||
| + | |- | ||
| + | | 1 || -1 || 1 || -1 | ||
| + | |- | ||
| + | | 1 || 1 || -1 || -1 | ||
| + | |- | ||
| + | |1 || -1 ||-1 || 1 | ||
| + | |} | ||
| + | #MATRIX("hadamard",4) | ||
| + | {| class="wikitable" | ||
| + | |- | ||
| + | | 1 || 1 || 1 || 1 || 1 || 1 || 1 || 1 | ||
| + | |- | ||
| + | | 1 || -1 || 1 || -1 ||1 ||-1 ||1 ||-1 | ||
| + | |- | ||
| + | | 1 || 1 || -1 || -1 || 1 || 1 || -1 ||-1 | ||
| + | |- | ||
| + | |1 || -1 ||-1 || 1 || 1 || -1 || -1 || 1 | ||
| + | |- | ||
| + | | 1 || 1 || 1 || 1 || -1 ||-1 ||-1 ||-1 | ||
| + | |- | ||
| + | | 1 || -1 || 1 ||-1 ||-1 || 1 || -1 ||1 | ||
| + | |- | ||
| + | | 1 || 1 || -1 || -1 || -1 || -1 || 1 || 1 | ||
| + | |- | ||
| + | | 1 || -1 || -1 || 1 || -1 ||1 || 1 ||-1 | ||
| + | |} | ||
| + | |||
| + | ==See Also== | ||
| + | *[[Manuals/calci/ANTIDIAGONAL| ANTIDIAGONAL]] | ||
| + | *[[Manuals/calci/CONFERENCE| CONFERENCE]] | ||
| + | *[[Manuals/calci/CIRCULANT| CIRCULANT]] | ||
| + | *[[Manuals/calci/HANKEL| HANKEL]] | ||
| + | |||
| + | ==References== | ||
Revision as of 09:36, 24 April 2015
MATRIX("HADAMARD",order)
- Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle order} is the order of the hadamard matrix.
Description
- This function gives the matrix satisfying the property of Hadamard.
- A Hadamard matrix is the square matrix with the entries of 1 and -1.
- Also the rows of that matrix are orthogonal.
- So H be a Hadamard matrix of order 2n.
- The transpose of H is closely related to its inverse.
- The equivalent definition for hadamard matrix is:
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle H H^{T} = n I_{n}}
where Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle I_{n}} is the n × n identity matrix and Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle H^T} is the transpose of H.
- So the possible order of the matrix is 1,2 or positive multiple of 4.
- The few examples of hadamard matrices are:
- Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle H_1=\begin{bmatrix} 1 \\ \end{bmatrix}}
- Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle H_2 = \begin{bmatrix} 1 & 1 \\ 1 & -1 \\ \end{bmatrix}}
- Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle H_3 =\begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & -1 & 1 & -1\\ 1 & 1 & -1 & -1 \\ 1 & -1 & -1 & 1\\ \end{bmatrix}}
Examples
- MATRIX("hadamard")
| 1 | 1 | 1 | 1 |
| 1 | -1 | 1 | -1 |
| 1 | 1 | -1 | -1 |
| 1 | -1 | -1 | 1 |
- MATRIX("hadamard",4)
| 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
| 1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 |
| 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 |
| 1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 |
| 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 |
| 1 | -1 | 1 | -1 | -1 | 1 | -1 | 1 |
| 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 |
| 1 | -1 | -1 | 1 | -1 | 1 | 1 | -1 |