Difference between revisions of "Manuals/calci/IMABS"
Jump to navigation
Jump to search
Line 21: | Line 21: | ||
*IMABS("6+8i") = <math>\sqrt{6^2+8^2}</math> = <math>\sqrt{100}</math> = 10 | *IMABS("6+8i") = <math>\sqrt{6^2+8^2}</math> = <math>\sqrt{100}</math> = 10 | ||
− | *IMABS("5-7i") = <math>\sqrt{74}</math> = 8. | + | *IMABS("5-7i") = <math>\sqrt{74}</math> = 8.602325267042627 |
− | *IMABS("-3-5i")= <math>\sqrt{34}</math> = 5. | + | *IMABS("-3-5i")= <math>\sqrt{34}</math> = 5.830951894845301 |
==Related Videos== | ==Related Videos== |
Latest revision as of 03:07, 23 October 2020
IMABS(ComplexNumber)
- is of the form
- IMABS(),returns the absolute value (modulus) of a complex number
Description
- This function gives the absolute value of a complex number of the form .
- Complex number , where & are real numbers and is the imaginary unit .
- A complex number's absolute value is measured from zero on the complex number plane.
- We can use COMPLEX function to convert real and imaginary number into a complex number.
- The absolute value of a complex number is:
ZOS
- The syntax is to calculate IMABS in ZOS is .
- is of the form .
- For e.g.,IMABS("5-7i")+IMABS("6+4i")
Examples
- IMABS("6+8i") = = = 10
- IMABS("5-7i") = = 8.602325267042627
- IMABS("-3-5i")= = 5.830951894845301
Related Videos
See Also
References