Difference between revisions of "Manuals/calci/IMEXP"
Jump to navigation
Jump to search
Line 23: | Line 23: | ||
==References== | ==References== | ||
− | [http://en.wikipedia.org/wiki/Exponential_function | + | [http://en.wikipedia.org/wiki/Exponential_function Exponential function] |
Revision as of 23:33, 11 December 2013
IMEXP(z)
- where is the complex number.
Description
- This function gives the exponential of a complex number.
- In , is the complex number of the form , & are real numbers & is the imaginary unit. .
- Euler's formula states that , for any real number and is the base of the natural logarithm.
- The approximate value of the constant e=2.718281828459045 and it is equal to . So the exponential of a complex number is : .
- When imaginary part is '0', it will give the exponent value of the real number. i.e when imaginary number is '0'.
- We can use COMPLEX function to convert the real and imaginary coefficients to a complex number.
Examples
- =IMEXP("2+3i") = -7.315110094901102+1.0427436562359i
- =IMEXP("4-5i") = 15.4874305606508+52.355491418482i
- =IMEXP("6") = 403.428793492735
- =IMEXP("2i") = -0.416146836547142+0.909297426825682i
- =IMEXP("0") = 1 and IMEXP("0i") = 1