Difference between revisions of "Manuals/calci/TINV"

From ZCubes Wiki
Jump to navigation Jump to search
(Created page with "<div id="6SpaceContent" class="zcontent" align="left"> <font color="#484848"><font face="Arial, sans-serif"><font size="2">'''TINV'''</font></font></font><font color="#4848...")
 
Line 1: Line 1:
<div id="6SpaceContent" class="zcontent" align="left">
+
<div style="font-size:30px">'''TINV(prob,df) '''</div><br/>
 +
*<math>prob </math> is the probability value for the two tailed t-distribution.
 +
*<math> df </math> is the degrees of freedom.
  
<font color="#484848"><font face="Arial, sans-serif"><font size="2">'''TINV'''</font></font></font><font color="#484848"><font face="Arial, sans-serif"><font size="2">(</font></font></font><font color="#484848"><font face="Arial, sans-serif"><font size="2">'''prob'''</font></font></font><font color="#484848"><font face="Arial, sans-serif"><font size="2">,</font></font></font><font color="#484848"><font face="Arial, sans-serif"><font size="2">'''df'''</font></font></font><font color="#484848"><font face="Arial, sans-serif"><font size="2">)</font></font></font>
 
  
<font color="#484848"><font face="Arial, sans-serif"><font size="2">Where prob is the probability associated with the two-tailed Student's t-distribution and 'df' It is the number of degrees of freedom.</font></font></font>
+
==Description==
 +
*This function gives the t value of the t-distribution.
 +
*This function is called the inverse function of the t-distribution.
 +
*In <math> TINV(prob,df), prob </math> is the probability value related with the two tailed distribution and <math> df </math> is the number of degrees of freedom which is  characterize the distribution.
 +
*i.e., This function is the inverse value of <math> TDIST(x,df,2)</math>.
 +
*Suppose we want to find the inverse value os one tailed distribution, then we have to multiply 2 with the prob value.
 +
*For e.g., TINV(0.078,20)=1.857683 which is the inverse value of two tailed t-distribution.
 +
*TINV(2*0.078,20)=1.474181542 which is the  inverse value of one tailed t-distribution.
 +
*Suppose df value is decimal then it is converted in to integers.
 +
*If <math>TDIST(x,df,t)=prob </math>, then <math> TINV(prob,df)=x</math> for the two tailed t-distribution. 
 +
*<math> TINV </math> using the iterating method to find the value of <math> x </math>.
 +
*Suppose the iteration has not converged after 100 searches, then the function gives the error result.
 +
*This function will give the result as error when
 +
    1.Any one of the argument is nonnumeric.
 +
    2.prob<0 or prob>1 or df<1.
  
</div>
 
----
 
<div id="1SpaceContent" class="zcontent" align="left"> <font color="#484848"><font face="Arial, sans-serif"><font size="2">This function returns the t-value of the Student's t-distribution as a function of the probability and the degrees of freedom.</font></font></font></div>
 
----
 
<div id="7SpaceContent" class="zcontent" align="left"> 
 
  
* <font color="#484848"><font face="Arial, sans-serif"><font size="2">TINV returns the error value when the argument is non numeric or df&lt;1</font></font></font>
+
==Examples==
* <font color="#484848"><font face="Arial, sans-serif"><font size="2">Prob value must be between 0 and 1.</font></font></font>
+
#TINV(0.0742,55)=1.820015422
 +
#TINV(2*0.0371,55)=1.820015422
 +
#TINV(0.65482,29) = 0.451735616
 +
#TINV(0.5,5)=0.726686844
 +
  
</div>
+
==See Also==
----
+
*[[Manuals/calci/TTEST | TTEST]]
<div id="12SpaceContent" class="zcontent" align="left"><div class="ZEditBox" align="left">
+
*[[Manuals/calci/TDIST  | TDIST ]]
  
TINV
 
  
</div></div>
+
==References==
----
 
<div id="8SpaceContent" class="zcontent" align="left"> 
 
 
 
<font color="#484848"><font face="Arial, sans-serif"><font size="2">'''B'''</font></font></font>
 
 
 
<font color="#484848"><font face="Arial, sans-serif"><font size="2">'''0.3979'''</font></font></font>
 
 
 
<font color="#484848"><font face="Arial, sans-serif"><font size="2">'''80'''</font></font></font>
 
 
 
<font color="#484848"><font face="Arial, sans-serif"><font size="2">'''<nowiki>=TINV(B2,B3) is 0.85</nowiki>'''</font></font></font>
 
 
 
</div>
 
----
 
<div id="10SpaceContent" class="zcontent" align="left"><div class="ZEditBox" align="justify">Syntax </div><div class="ZEditBox"><center></center></div></div>
 
----
 
<div id="4SpaceContent" class="zcontent" align="left"><div class="ZEditBox" align="justify">Remarks </div></div>
 
----
 
<div id="3SpaceContent" class="zcontent" align="left"><div class="ZEditBox" align="justify">Examples </div></div>
 
----
 
<div id="11SpaceContent" class="zcontent" align="left"><div class="ZEditBox" align="justify">Description </div></div>
 
----
 
<div id="2SpaceContent" class="zcontent" align="left">
 
 
 
{| id="TABLE3" class="SpreadSheet blue"
 
|- class="even"
 
| class="    " |
 
| class="      " | Column1
 
| class="        " | Column2
 
| class="      " | Column3
 
| class="  " | Column4
 
|- class="odd"
 
| class=" " | Row1
 
| class="sshl_f" | 0.3979
 
| class="sshl_f" | 0.849931
 
| class="sshl_f" |
 
| class="sshl_f" |
 
|- class="even"
 
| class="  " | Row2
 
| class="sshl_f" | 80
 
| class="SelectTD" |
 
| class="sshl_f  " |
 
| class="sshl_f" |
 
|- class="odd"
 
| Row3
 
| class="sshl_f" |
 
| class="sshl_f  " |
 
| class="sshl_f" |
 
| class="sshl_f" |
 
|- class="even"
 
| Row4
 
| class="sshl_f" |
 
| class="sshl_f  " |
 
| class="sshl_f" |
 
| class="sshl_f" |
 
|- class="odd"
 
| class="sshl_f" | Row5
 
| class="sshl_f" |
 
| class="sshl_f  " |
 
| class="sshl_f  " |
 
| class="sshl_f" |
 
|- class="even"
 
| class="sshl_f" | Row6
 
| class="sshl_f" |
 
| class="sshl_f  " |
 
| class="sshl_f" |
 
| class="sshl_f" |
 
|- class="odd"
 
| class="sshl_f" | Row7
 
| class="sshl_f" |
 
| class="sshl_f  " |
 
| class="sshl_f  " |
 
| class="sshl_f  " |
 
|- class="even"
 
| class="sshl_f" | Row8
 
| class="sshl_f" |
 
| class="sshl_f  " |
 
| class="sshl_f" |
 
| class="sshl_f" |
 
|}
 
 
 
<div align="left">[[Image:calci1.gif]]</div></div>
 
----
 

Revision as of 23:46, 26 January 2014

TINV(prob,df)


  • is the probability value for the two tailed t-distribution.
  • is the degrees of freedom.


Description

  • This function gives the t value of the t-distribution.
  • This function is called the inverse function of the t-distribution.
  • In is the probability value related with the two tailed distribution and is the number of degrees of freedom which is characterize the distribution.
  • i.e., This function is the inverse value of .
  • Suppose we want to find the inverse value os one tailed distribution, then we have to multiply 2 with the prob value.
  • For e.g., TINV(0.078,20)=1.857683 which is the inverse value of two tailed t-distribution.
  • TINV(2*0.078,20)=1.474181542 which is the inverse value of one tailed t-distribution.
  • Suppose df value is decimal then it is converted in to integers.
  • If , then for the two tailed t-distribution.
  • using the iterating method to find the value of .
  • Suppose the iteration has not converged after 100 searches, then the function gives the error result.
  • This function will give the result as error when
    1.Any one of the argument is nonnumeric. 
    2.prob<0 or prob>1 or df<1.


Examples

  1. TINV(0.0742,55)=1.820015422
  2. TINV(2*0.0371,55)=1.820015422
  3. TINV(0.65482,29) = 0.451735616
  4. TINV(0.5,5)=0.726686844


See Also


References