Difference between revisions of "Manuals/calci/UNIFORM"

From ZCubes Wiki
Jump to navigation Jump to search
Line 14: Line 14:
 
                     0,    &for & x > b  
 
                     0,    &for & x > b  
 
                     \end{cases}</math>
 
                     \end{cases}</math>
 
==equation==
 
<math>
 
P(x)=
 
\begin{cases}
 
0, &for &x<a \\
 
1/b-a, &for &a<x<b \\
 
0,    &for &x>b
 
\end{cases}
 
</math>
 
*The Lucas numbers  are defined by: <math>P(x)=\begin{cases}  0, &for &x<a \\
 
                                                            1/b-a, &for &a<x<b \\
 
                                                            0,    &for &x>b
 
                                              \end{cases}</math>
 
  
 
==Examples==
 
==Examples==

Revision as of 00:29, 11 February 2014

UNIFORMDISTRIBUTED(x,ll,ul)


  • is the value of the function.
  • is the lower limit.
  • is the upper limit of the function.

Description

  • This function gives the probability of the uniform distribution.
  • Uniform distribution is a symmetric probability distribution.
  • It is also called rectangular distribution.
  • In , is the numeric value to find the probability of the distribution, is the lower limit value and is the upper limit value.
  • The Probability Density Function of the uniform distribution for the interval(a,b) is given by:

P(x)=

Examples

  1. UNIFORMDISTRIBUTED(4,2,3) = 4030484680552036 2.6280935418326408 2.2810050058178604 2.97846262995153679
  2. UNIFORMDISTRIBUTED(5,3,6) = 5.522187389200553 3.566177821950987 5.04674904467538 5.301322509767488 4.9094569575972855

See Also

References