Difference between revisions of "Manuals/calci/IMCSCH"

From ZCubes Wiki
Jump to navigation Jump to search
Line 1: Line 1:
<div style="font-size:30px">'''IMCSCH(iz)'''</div><br/>
+
<div style="font-size:30px">'''IMCSCH(ComplexNumber)'''</div><br/>
* where iz is the complex number
+
* where <math>ComplexNumber</math> is any complex number.
  
 
==Description==
 
==Description==
  
 
*This function gives the hyperbolic cosec (csch) value of a complex number.  
 
*This function gives the hyperbolic cosec (csch) value of a complex number.  
*Where 'iz' is the complex number in the form of <math>x+iy</math>
+
*Consider  the complex number in the form of <math>x+iy</math>
 
*x & y are the real numbers.
 
*x & y are the real numbers.
 
*'i' is the imaginary unit <math>i=\sqrt{-1}</math>
 
*'i' is the imaginary unit <math>i=\sqrt{-1}</math>
Line 13: Line 13:
  
 
== Examples ==
 
== Examples ==
'''IMCSCH(iz)'''
+
'''IMCSCH(ComplexNumber)'''
*'''iz''' is the complex number.  
+
*'''ComplexNumber''' is any complex number.  
  
 
{|id="TABLE1" class="SpreadSheet blue"
 
{|id="TABLE1" class="SpreadSheet blue"
  
 
|- class="even"
 
|- class="even"
|'''IMCSCH(iz)'''
+
|'''IMCSCH(ComplexNumber)'''
 
|'''Value'''
 
|'''Value'''
  

Revision as of 16:18, 16 July 2018

IMCSCH(ComplexNumber)


  • where is any complex number.

Description

  • This function gives the hyperbolic cosec (csch) value of a complex number.
  • Consider the complex number in the form of
  • x & y are the real numbers.
  • 'i' is the imaginary unit
  • Also x is called the real part & y is the imaginary part of a complex number.
  • COMPLEX is the function used to convert Real & Imaginary numbers in to a complex number.
  • is defined by

Examples

IMCSCH(ComplexNumber)

  • ComplexNumber is any complex number.
IMCSCH(ComplexNumber) Value
IMCSCH("7+4i") -0.001192090379815322+i0.0013802299076340766
IMCSCH("7-8i") -0.0002653570703635442+ⅈ0.001804354511817408
IMCSCH("3") 0.09982156966882273+i0

Related Videos

Trigonometric Form of Complex Numbers

See Also


References