Difference between revisions of "Manuals/calci/BINOMIALPROBABILTY"
Jump to navigation
Jump to search
Line 1: | Line 1: | ||
<div style="font-size:30px">'''BINOMIALPROBABILTY (NumberOftrials,NumberOfSuccess,ProbabiltyOfSuccess)'''</div><br/> | <div style="font-size:30px">'''BINOMIALPROBABILTY (NumberOftrials,NumberOfSuccess,ProbabiltyOfSuccess)'''</div><br/> | ||
+ | *<math>NumberOftrials</math> is any number of trials. | ||
Line 11: | Line 12: | ||
*If the probability of success on an individual trial is P, then the binomial probability is: | *If the probability of success on an individual trial is P, then the binomial probability is: | ||
<math>b(x; n, P) = _nC_x* P^x *(1 - P)^{n - x}</math> | <math>b(x; n, P) = _nC_x* P^x *(1 - P)^{n - x}</math> | ||
+ | |||
+ | ==Examples== | ||
+ | #BINOMIALPROBABILTY(5,2,1/6) = 0.1607510288065844 | ||
+ | #BINOMIALPROBABILTY(10,4,1/3)= 0.2276075801453032 | ||
+ | #BINOMIALPROBABILTY(20,19,1/9) = 1.3160421343951921e-17 | ||
+ | |||
+ | ==See Also== | ||
+ | *[[Manuals/calci/BINOMIAL | BINOMIAL ]] | ||
+ | *[[Manuals/calci/BINOMIALCOEFFICIENT | BINOMIALCOEFFICIENT]] | ||
+ | *[[Manuals/calci/BINOMIALDISTRIBUTED | BINOMIALDISTRIBUTED ]] | ||
+ | |||
+ | ==References== | ||
+ | *[http://stattrek.com/probability-distributions/binomial.aspx] | ||
+ | |||
+ | |||
+ | *[[Z_API_Functions | List of Main Z Functions]] | ||
+ | |||
+ | *[[ Z3 | Z3 home ]] |
Latest revision as of 16:28, 27 December 2018
BINOMIALPROBABILTY (NumberOftrials,NumberOfSuccess,ProbabiltyOfSuccess)
- is any number of trials.
Description
- This function shows the value of Binomial Probability.
- In , is the number of times of the trials.
- is the results of the success.
- is the value of the Probability.
- The binomial probability refers to the probability that a binomial experiment results in exactly x successes.
- Suppose a binomial experiment consists of n trials and results in x successes.
- If the probability of success on an individual trial is P, then the binomial probability is:
Examples
- BINOMIALPROBABILTY(5,2,1/6) = 0.1607510288065844
- BINOMIALPROBABILTY(10,4,1/3)= 0.2276075801453032
- BINOMIALPROBABILTY(20,19,1/9) = 1.3160421343951921e-17
See Also
References