Manuals/calci/FISHERINV

From ZCubes Wiki
Jump to navigation Jump to search
FISHERINV(Number)


  • Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle Number} is the value to find inverse of fisher transformation.
    • FISHERINV(), returns the inverse of the Fisher transformation.

Description

  • This function gives the inverse of the Fisher transformation.
  • We use this to test the correlations between set of data.
  • The Inverse of the Fisher transformation is: Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x= \frac {e^{2y-1}}{e^{2y+1}}} i.e Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle y=FISHER(x)} , then Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle FISHERINV(y)=x}
  • It can be used to construct a confidence interval.
  • A confidence interval (CI) is a type of interval estimate of a population parameter and is used to indicate the reliability of an estimate.
This function will give the result as error when the  value is non-numeric.

ZOS

  • The syntax is to calculate FISHERINV in ZOS is Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle FISHERINV(Number)} .
    • Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle Number} is the value to find inverse of fisher transformation.
  • For e.g.,FISHERINV(0.4521..0.507..0.01)
Inverse Fisher transformation

Examples

  1. FISHERINV(0.6389731838) = 0.56419999998
  2. FISHERINV(0) = 0
  3. FISHERINV(0.1234) = 0.1227774315035342
  4. FISHERINV(1) = 0.761594155955765
  5. FISHERINV(-0.4296) = -0.4049869686465480

Related Videos

Sampling Distributions

See Also

References

Fisher Distribution