Manuals/calci/BESSELJ

Revision as of 07:02, 29 September 2021 by Devika (talk | contribs) (→‎Examples)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
BESSELJ(x,n)


  • is the value to evaluate the function
  • is the order of the Bessel function and is an integer.
    • BESSELJ(), returns the modified Bessel Function Jn(x).

Description

  • This function gives the value of the modified Bessel function.
  • Bessel functions is also called Cylinder Functions because they appear in the solution to Laplace's equation in cylindrical coordinates.
  • Bessel's Differential Equation is defined as:  

where   is the arbitrary Complex Number.

  • But in most of the cases   is the non-negative real number.
  • The solutions of this equation are called Bessel Functions of order n.
  • Bessel functions of the first kind, denoted as  
  • The Bessel function of the first kind of order can be expressed as:

 

  • where   or
  •   is the Gamma Function.
  • This function will give result as error when
1.   or   is non numeric
2.  , because   is the order of the function.

ZOS

  • The syntax is to calculate BESSELJ in ZOS is  .
    •   is the value to evaluate the function
    •   is the order of the Bessel function and is an integer.
  • For e.g.,BESSELJ(0.789..0.901..0.025,5)

Examples

  1. BESSELJ(2,3) = 0.12894324997562717
  2. BESSELJ(7,2) = -0.3014172238218034
  3. BESSELJ(5,1) = -0.3275791385663632

Related Videos

BESSEL Equation

See Also

References

Bessel Function