Manuals/calci/EXCHANGE

From ZCubes Wiki
Jump to navigation Jump to search
MATRIX("EXCHANGE",order)


  • Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle order} is the order of the Exchange matrix.

Description

  • This function gives the exchange matrix of order 3.
  • The exchange matrix is the square matrix of a permutation matrix.
  • In this matrix the 1 elements reside on the counterdiagonal and all other elements are zero.
  • It is a 'row-reversed' or 'column-reversed' version of the identity matrix.
  • Suppose J is an nxn exchange matrix, then the elements of J are defined such that

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle J_{i,j}=\begin{cases} 1, j=n-i+1 \\ 0, j\neq n-i+1 \\ \end{cases}} .

  • It is also called the reversal matrix,backward identity, or standard involutory permutation.
  • The form of exchange matrices are

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle J_2=\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}} Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle J_3=\begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}} Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle J_n =\begin{pmatrix} 0 & 0 & \cdots & 0 & 0 & 1 \\ 0 & 0 & \cdots & 0 & 1 & 0 \\ 0 & 0 & \cdots & 1 & 0 & 0 \\ \vdots & \ddots & \vdots \\ 0 & 1 & \cdots & 0 & 0 & 0 \\ 1 & 0 & \cdots & 0 & 0 & 0 \\ \end{pmatrix}}


Examples

  • 1.MATRIX("Exchange") =1
  • 2.MATRIX("Exchange",3)
0 0 1
0 1 0
1 0 0
  • 3.MATRIX("Exchange",6)
0 0 0 0 0 1
0 0 0 0 1 0
0 0 0 1 0 0
0 0 1 0 0 0
0 1 0 0 0 0
1 0 0 0 0 0

See Also

References