Difference between revisions of "Manuals/calci/EXCHANGE"

From ZCubes Wiki
Jump to navigation Jump to search
 
(3 intermediate revisions by the same user not shown)
Line 22: Line 22:
 
0 & 1 & 0 \\
 
0 & 1 & 0 \\
 
0 & 0 & 1
 
0 & 0 & 1
\end{pmatrix}</math>()
+
\end{pmatrix}</math>
 
<math> J_n =\begin{pmatrix}
 
<math> J_n =\begin{pmatrix}
 
0 & 0 & \cdots &  0 & 0 & 1 \\
 
0 & 0 & \cdots &  0 & 0 & 1 \\
Line 31: Line 31:
 
1 & 0 & \cdots  & 0 & 0 & 0 \\
 
1 & 0 & \cdots  & 0 & 0 & 0 \\
 
\end{pmatrix}</math>
 
\end{pmatrix}</math>
 +
 +
 +
==Examples==
 +
*1.MATRIX("Exchange") =1
 +
*2.MATRIX("Exchange",3)
 +
{| class="wikitable"
 +
|-
 +
| 0 || 0 || 1
 +
|-
 +
| 0 || 1 || 0
 +
|-
 +
| 1|| 0 || 0
 +
|}
 +
*3.MATRIX("Exchange",6)
 +
{| class="wikitable"
 +
|-
 +
| 0 || 0 || 0 || 0 || 0 || 1
 +
|-
 +
| 0 || 0 || 0 || 0 || 1 || 0
 +
|-
 +
| 0 || 0 || 0 || 1 || 0 || 0
 +
|-
 +
| 0 || 0 || 1 || 0 || 0 || 0
 +
|-
 +
| 0 || 1 || 0 || 0 || 0 || 0
 +
|-
 +
| 1 || 0 || 0 || 0 || 0 || 0
 +
|}
 +
 +
==See Also==
 +
*[[Manuals/calci/HADAMARD| HADAMARD]]
 +
*[[Manuals/calci/HESSENBERG| HESSENBERG]]
 +
*[[Manuals/calci/IDENTITY| IDENTITY]]
 +
*[[Manuals/calci/HANKEL| HANKEL]]
 +
 +
==References==
 +
*[http://en.wikipedia.org/wiki/Exchange_matrix Exchange matrix]

Latest revision as of 00:45, 26 October 2015

MATRIX("EXCHANGE",order)


  • is the order of the Exchange matrix.

Description

  • This function gives the exchange matrix of order 3.
  • The exchange matrix is the square matrix of a permutation matrix.
  • In this matrix the 1 elements reside on the counterdiagonal and all other elements are zero.
  • It is a 'row-reversed' or 'column-reversed' version of the identity matrix.
  • Suppose J is an nxn exchange matrix, then the elements of J are defined such that

.

  • It is also called the reversal matrix,backward identity, or standard involutory permutation.
  • The form of exchange matrices are


Examples

  • 1.MATRIX("Exchange") =1
  • 2.MATRIX("Exchange",3)
0 0 1
0 1 0
1 0 0
  • 3.MATRIX("Exchange",6)
0 0 0 0 0 1
0 0 0 0 1 0
0 0 0 1 0 0
0 0 1 0 0 0
0 1 0 0 0 0
1 0 0 0 0 0

See Also

References