Difference between revisions of "Manuals/calci/UNIFORM"
Jump to navigation
Jump to search
Line 13: | Line 13: | ||
<math>P(x)= | <math>P(x)= | ||
\begin{cases} | \begin{cases} | ||
− | 0 | + | 0 \\ |
− | 1/b-a | + | 1/b-a \\ |
− | 0 | + | 0 |
\end{cases}</math> | \end{cases}</math> | ||
Line 22: | Line 22: | ||
n/2, &if n is even \\ | n/2, &if n is even \\ | ||
3n+1, &if n is odd | 3n+1, &if n is odd | ||
+ | \end{cases}</math> | ||
+ | |||
+ | <math>P(x)= | ||
+ | \begin{cases} | ||
+ | 0, &for &x<a \\ | ||
+ | 1/b-a, &for &a<x<b \\ | ||
+ | 0, &for &x>b | ||
\end{cases}</math> | \end{cases}</math> | ||
Revision as of 23:42, 10 February 2014
UNIFORMDISTRIBUTED(x,ll,ul)
- is the value of the function.
- is the lower limit.
- is the upper limit of the function.
Description
- This function gives the probability of the uniform distribution.
- Uniform distribution is a symmetric probability distribution.
- It is also called rectangular distribution.
- In , is the numeric value to find the probability of the distribution, is the lower limit value and is the upper limit value.
- The probability density function of the uniform distribution in the interval [a,b] are :
Examples
- UNIFORMDISTRIBUTED(4,2,3) = 4030484680552036 2.6280935418326408 2.2810050058178604 2.97846262995153679
- UNIFORMDISTRIBUTED(5,3,6) = 5.522187389200553 3.566177821950987 5.04674904467538 5.301322509767488 4.9094569575972855