Difference between revisions of "Manuals/calci/EXPOF"
Jump to navigation
Jump to search
(Created page with "expof") |
|||
| Line 1: | Line 1: | ||
| − | + | <div style="font-size:30px">'''EXPOF(x)'''</div><br/> | |
| + | *<math>x</math> is the number. | ||
| + | |||
| + | ==Description== | ||
| + | *This function gives the <math>e</math> raised to the power of number. | ||
| + | *In <math>EXPOF(x)</math>, where <math>x</math> represents the exponent of <math>e</math> or <math>e^x</math>. | ||
| + | *The approximate value of the constant <math>e=2.718281828459045</math> and it is equal to <math>e^x</math> or <math>EXP(1)</math>. | ||
| + | *It is called the Mathematical Constant or Euler's Number or Napier's Constant. | ||
| + | *It is the base of natural logarithm. | ||
| + | *It can be calculate the sum of infinite series: <math>e=1+\frac{1}{1}+\frac{1}{1.2}+\frac{1}{1.2.3}+\frac{1}{1.2.3.4} +...</math> | ||
| + | *And the inverse function of the natural logarithm function is the exponential function: | ||
| + | <math>f^{-1}(x) = e^x</math>. | ||
| + | |||
| + | ==Examples== | ||
| + | #EXPOF(1) = 2.718281828459045 7.38905609893065 20.085536923187668 54.598150033144236 148.4131591025766 403.4287934927351 1096.6331584284585 2980.9579870417283 8103.083927575384 22026.465794806718 | ||
| + | |||
| + | ==See Also== | ||
| + | |||
| + | *[[Manuals/calci/IMEXP | IMEXP ]] | ||
| + | *[[Manuals/calci/LOG | LOG ]] | ||
| + | *[[Manuals/calci/LN | LN ]] | ||
| + | |||
| + | ==References== | ||
| + | [http://en.wikipedia.org/wiki/Exponential_function Exponential function] | ||
| + | |||
| + | *[[Z_API_Functions | List of Main Z Functions]] | ||
| + | |||
| + | *[[ Z3 | Z3 home ]] | ||
Revision as of 12:50, 11 April 2017
EXPOF(x)
- is the number.
Description
- This function gives the raised to the power of number.
- In , where represents the exponent of or .
- The approximate value of the constant and it is equal to or .
- It is called the Mathematical Constant or Euler's Number or Napier's Constant.
- It is the base of natural logarithm.
- It can be calculate the sum of infinite series:
- And the inverse function of the natural logarithm function is the exponential function:
.
Examples
- EXPOF(1) = 2.718281828459045 7.38905609893065 20.085536923187668 54.598150033144236 148.4131591025766 403.4287934927351 1096.6331584284585 2980.9579870417283 8103.083927575384 22026.465794806718