Difference between revisions of "Manuals/calci/IMPOWER"

From ZCubes Wiki
Jump to navigation Jump to search
 
(11 intermediate revisions by 4 users not shown)
Line 1: Line 1:
<div style="font-size:30px">'''IMPOWER(z,n)'''</div><br/>
+
<div style="font-size:30px">'''IMPOWER(Complexnumber,n)'''</div><br/>
*<math>z</math> is the complex number is of the form <math>x+iy</math>  
+
*<math>Complexnumber</math> is of the form <math>z=x+iy</math>  
 
*<math>n</math> is the power value.
 
*<math>n</math> is the power value.
 +
**IMPOWER(), returns a complex number raised to an integer power.
  
 
==Description==
 
==Description==
 
*This function gives the value of powers of complex number.
 
*This function gives the value of powers of complex number.
 
*DeMoivre's Theorem is a generalized formula to compute powers of a complex number in it's polar form.
 
*DeMoivre's Theorem is a generalized formula to compute powers of a complex number in it's polar form.
*i'is the imaginary unit, <math>i=\sqrt{-1}</math>
+
*<math>i</math> is the imaginary unit, <math>i=\sqrt{-1}</math>
*Then the power of a complex number is defined by <math>(z)^n=(x+iy)^n=r^n*e^{in\theta}=r^n(cosn\theta+isinn\theta)</math> where <math>r=\sqrt{x^2+y^2}</math>. and  <math>\theta=tan^-1(y/x)</math>, <math>\theta∈(-\pi,\pi]</math>.  
+
*Then the power of a complex number is defined by
 +
:<math>(z)^n=(x+iy)^n=r^n*e^{in\theta}=r^n(cosn\theta+isinn\theta)</math>  
 +
where <math>r=\sqrt{x^2+y^2}</math> and  <math>\theta=tan^{-1}(\frac{y}{x})</math>, <math>\theta \isin (-\pi,\pi]</math>.  
 
*This formula is called DeMoivre's theorem of complex numbers.  
 
*This formula is called DeMoivre's theorem of complex numbers.  
 
*We can use [[Manuals/calci/COMPLEX| COMPLEX]] function to convert real and imaginary number in to a complex number.  
 
*We can use [[Manuals/calci/COMPLEX| COMPLEX]] function to convert real and imaginary number in to a complex number.  
*In IMPOWER(z,n), <math>n</math> can be integer, fractional or negative.  
+
*In IMPOWER(Complexnumber,n), <math>n</math> can be integer, fractional or negative.  
 
*If <math>n</math> is non-numeric, function will return error value.
 
*If <math>n</math> is non-numeric, function will return error value.
 +
 +
==ZOS==
 +
*The syntax is to calculate powers of Complex number in ZOS is <math>IMPOWER(Complexnumber,n)</math>.
 +
**<math>Complexnumber</math>  is of the form <math>z=x+iy</math>
 +
**<math>n</math> is the power value.
 +
*For e.g.,IMPOWER("7-8i",6)
 +
{{#ev:youtube|QRkmmsadQhA|280|center|Impower}}
  
 
==Examples==
 
==Examples==
Line 17: Line 27:
 
#=IMPOWER("4+5i",3) = -235.99999+115i
 
#=IMPOWER("4+5i",3) = -235.99999+115i
 
#=IMPOWER("9-7i",4) = -14852-8063.999999i
 
#=IMPOWER("9-7i",4) = -14852-8063.999999i
#=IMPOWER("6",9) = 10077696
+
#=IMPOWER("6",9) = 10077696+0i
#=IMPOWER("i",10) = -1+6.1257422745431E-16i
+
#=IMPOWER("i",10) = -1+0i
 +
 
 +
==Related Videos==
 +
 
 +
{{#ev:youtube|dl_9NC_J6yo|280|center|IMPOWER}}
  
 
==See Also==
 
==See Also==
Line 28: Line 42:
  
 
==References==
 
==References==
[http://en.wikipedia.org/wiki/Binary_logarithm Binary Logarithm]
+
[http://en.wikipedia.org/wiki/De_Moivre's_formula De Moivre's formula]
 +
 
 +
 
 +
 
 +
*[[Z_API_Functions | List of Main Z Functions]]
 +
 
 +
*[[ Z3 |  Z3 home ]]

Latest revision as of 04:02, 2 November 2020

IMPOWER(Complexnumber,n)


  • is of the form
  • is the power value.
    • IMPOWER(), returns a complex number raised to an integer power.

Description

  • This function gives the value of powers of complex number.
  • DeMoivre's Theorem is a generalized formula to compute powers of a complex number in it's polar form.
  • is the imaginary unit,
  • Then the power of a complex number is defined by

where and , .

  • This formula is called DeMoivre's theorem of complex numbers.
  • We can use COMPLEX function to convert real and imaginary number in to a complex number.
  • In IMPOWER(Complexnumber,n), can be integer, fractional or negative.
  • If is non-numeric, function will return error value.

ZOS

  • The syntax is to calculate powers of Complex number in ZOS is .
    • is of the form
    • is the power value.
  • For e.g.,IMPOWER("7-8i",6)
Impower

Examples

  1. =IMPOWER("4+5i",3) = -235.99999+115i
  2. =IMPOWER("9-7i",4) = -14852-8063.999999i
  3. =IMPOWER("6",9) = 10077696+0i
  4. =IMPOWER("i",10) = -1+0i

Related Videos

IMPOWER

See Also

References

De Moivre's formula