Difference between revisions of "Manuals/calci/NORMAL"

From ZCubes Wiki
Jump to navigation Jump to search
 
(3 intermediate revisions by one other user not shown)
Line 3: Line 3:
 
*<math>m </math> is the mean.
 
*<math>m </math> is the mean.
 
*<math>sd</math> is the standard deviation.
 
*<math>sd</math> is the standard deviation.
 
  
 
==Description==
 
==Description==
Line 24: Line 23:
 
*A normal distribution is calculated by :
 
*A normal distribution is calculated by :
 
<math>f(x,\mu,\sigma)=\frac {1}{\sigma\sqrt{2\pi}} e^{\frac{-(x-\mu)^2}{2\sigma^2}}</math>
 
<math>f(x,\mu,\sigma)=\frac {1}{\sigma\sqrt{2\pi}} e^{\frac{-(x-\mu)^2}{2\sigma^2}}</math>
where <math>\mu</math> is the mean and  <math>\sigma<\math> is the standard deviaton of the distribution.
+
where <math>\mu</math> is the mean and  <math>\sigma</math> is the standard deviaton of the distribution.
  
 
==Examples==
 
==Examples==
 +
#=NORMALDISTRIBUTED(250,255,2.5) = 748.545737759758,417.93831835416444,-92.67846228553037,etc
 +
#=NORMALDISTRIBUTED(30,36,20.9) = 7.937852412035841,10.385286729354199,83.54572095198611 etc.
  
 +
==Related Videos==
  
where  ,  and 
+
{{#ev:youtube|1iDyrcpbXt8|280|center|NORMAL}}
<div id="6SpaceContent" class="zcontent" align="left">
 
 
 
'''RANDOMNUMBERGENERATION'''(Number, RandomNumber, Distribution, NewTableFlag, Mean, StandardDeviation)
 
 
 
where,
 
 
 
'''Number '''- represents the number of variables.
 
 
 
'''RandomNumber '''- represents the number of random number.
 
 
 
'''Distribution '''- represents the distribution method(i.e normal) to create random values.
 
 
 
'''NewTableFlag''' - is the TRUE or FALSE.If set as TRUE,the result in new sheet. If NewTableFlag is omitted, it assumed to be FALSE.
 
 
 
'''Mean '''- represents the Mean.
 
 
 
'''StandardDeviation '''- represents the standard deviation.
 
 
 
</div>
 
----
 
<div id="1SpaceContent" class="zcontent" align="left">Normal Distribution characterized by a mean and a standard deviation.</div>
 
----
 
<div id="7SpaceContent" class="zcontent" align="left">
 
 
 
Lets see an example in (Column3Row1)
 
 
 
UNIQeebbe8a3183fa626-nowiki-00000004-QINU
 
 
 
RANDOMNUMBERGENERATION returns the result in new sheet(5Space).
 
 
 
UNIQeebbe8a3183fa626-nowiki-00000005-QINU
 
 
 
RANDOMNUMBERGENERATION returns the #ERROR(Number &lt; 0).
 
 
 
</div>
 
----
 
<div id="12SpaceContent" class="zcontent" align="left"><div class="ZEditBox" align="left">
 
 
 
RANDOM NUMBER GENERATION : NORMAL
 
 
 
</div></div>
 
----
 
<div id="10SpaceContent" class="zcontent" align="left"><div class="ZEditBox" align="justify">Syntax </div><div class="ZEditBox"><center></center></div></div>
 
----
 
<div id="4SpaceContent" class="zcontent" align="left"><div class="ZEditBox" align="justify">Remarks </div></div>
 
----
 
<div id="3SpaceContent" class="zcontent" align="left"><div class="ZEditBox" align="justify">Examples </div></div>
 
----
 
<div id="11SpaceContent" class="zcontent" align="left"><div class="ZEditBox" align="justify">Description </div></div>
 
----
 
<div id="8SpaceContent" class="zcontent" align="left">
 
 
 
If Number &lt; 0 or RandomNumber &lt; 0, RANDOMNUMBERGENERATION returns the #ERROR.
 
 
 
</div>
 
----
 
<div id="2SpaceContent" class="zcontent" align="left">
 
 
 
{| id="TABLE3" class="SpreadSheet blue"
 
|- class="even"
 
| class=" " |
 
| Column1
 
| Column2
 
| class="  " | Column3
 
| Column4
 
|- class="odd"
 
| class=" " | Row1
 
| class="sshl_f" | 5Space
 
| class=" " |
 
| class=" " |
 
| class=" " |
 
|- class="even"
 
| class="  " | Row2
 
| class="    SelectTD1 ChangeBGColor SelectTD1" |
 
<div id="2Space_Handle" class="zhandles" title="Click and Drag to resize CALCI Column/Row/Cell. It is EZ!"></div><div id="2Space_Copy" class="zhandles" title="Click and Drag over to AutoFill other cells."></div><div id="2Space_Drag" class="zhandles" title="Click and Drag to Move/Copy Area.">[[Image:copy-cube.gif]]  </div>
 
| class=" " |
 
| class=" " |
 
| class=" " |
 
|- class="odd"
 
| Row3
 
| class=" " |
 
| class=" " |
 
| class=" " |
 
| class=" " |
 
|- class="even"
 
| Row4
 
| class="sshl_f" |
 
| class=" " |
 
| class=" " |
 
| class=" " |
 
|- class="odd"
 
| class=" " | Row5
 
| class="      " |
 
| class=" " |
 
| class=" " |
 
| class=" " |
 
|- class="even"
 
| Row6
 
| class=" " |
 
| class=" " |
 
| class=" " |
 
| class=" " |
 
|}
 
 
 
<div align="left">[[Image:calci1.gif]]</div></div>
 
----
 
<div id="5SpaceContent" class="zcontent" align="left">
 
  
{| class="SpreadSheet blue"
+
==See Also==
|+ Random Number Generation<br />Normal Distribution
+
*[[Manuals/calci/NORMDIST  | NORMDIST ]]
|- class="even"
+
*[[Manuals/calci/NORMSDIST  | NORMSDIST ]]
| -0.6469271541994427
+
*[[Manuals/calci/NORMINV  | NORMINV ]]
| -1.9074080903736057
 
| -0.617997136104105
 
|- class="odd"
 
| -0.7646726307858795
 
| -0.12686814329075044
 
| -1.0016839542241755
 
|- class="even"
 
| 1.5847698409152808
 
| 0.6334613031585946
 
| -0.4798269568260549
 
|- class="odd"
 
| -1.6687086155351085
 
| 1.102906962994111
 
| 1.4347768240383833
 
|}
 
  
</div>
+
==References==
----
+
*[http://stattrek.com/probability-distributions/normal.aspx Normal Distribution]

Latest revision as of 15:09, 30 June 2015

NORMALDISTRIBUTED(x,m,sd)


  • is the value for which distribution is evaluated.
  • is the mean.
  • is the standard deviation.

Description

  • This function gives the value of the normal probability distribution.
  • It is the continuous probability distribution.
  • The normal distributions are a very important class of statistical distributions.
  • All normal distributions are symmetric and have bell-shaped density curves with a single peak.
  • The term bell curve is used to describe the mathematical concept called normal distribution.
  • It is also called as Gaussian distribution.
  • The Normal Distribution has: mean = median = mode
  • i.e., This distribution is symmetry about the center.
  • Half of values less than the mean and half of values greater than the mean.
  • In a normal distribution the probability values are satisfying the following conditions:
 1. The total area under the curve is equal to 1 (100%) 
 2. About 68% of the area under the curve falls within 1 standard deviation.
 3. About 95% of the area under the curve falls within 2 standard deviations.
 4. About 99.7% of the area under the curve falls within 3 standard deviations. 
  • In a normal distribution the mean =0 and standard deviation =1,then the distribution is called the standard normal distribution or the unit normal distribution, and a random variable with that distribution is a standard normal deviate.
  • It is the only absolutely continuous distribution.
  • A normal distribution is calculated by :

where is the mean and is the standard deviaton of the distribution.

Examples

  1. =NORMALDISTRIBUTED(250,255,2.5) = 748.545737759758,417.93831835416444,-92.67846228553037,etc
  2. =NORMALDISTRIBUTED(30,36,20.9) = 7.937852412035841,10.385286729354199,83.54572095198611 etc.

Related Videos

NORMAL

See Also

References