Difference between revisions of "Manuals/calci/IMARGUMENT"

 
(3 intermediate revisions by 3 users not shown)
Line 1: Line 1:
 
<div style="font-size:30px">'''IMARGUMENT(Complexnumber)'''</div><br/>
 
<div style="font-size:30px">'''IMARGUMENT(Complexnumber)'''</div><br/>
 
*<math>Complexnumber</math> is of the form <math>z=x+iy</math>.
 
*<math>Complexnumber</math> is of the form <math>z=x+iy</math>.
 +
**IMARGUMENT(), returns the argument theta, an angle expressed in radians
  
 
==Description==
 
==Description==
Line 26: Line 27:
 
#IMARGUMENT("2") = 0
 
#IMARGUMENT("2") = 0
 
#IMARGUMENT("4i") = 1.5707963267948966
 
#IMARGUMENT("4i") = 1.5707963267948966
#DEGREES(IMARGUMENT("2+2i")) = 45
+
#DEGREES(IMARGUMENT("2+2i")) = 45°
 +
 
 +
==Related Videos==
 +
 
 +
{{#ev:youtube|FwuPXchH2rA|280|center|Complex Number Analysis}}
  
 
==See Also==
 
==See Also==
Line 35: Line 40:
 
==References==
 
==References==
 
*[http://mathworld.wolfram.com/ComplexArgument.html Complex Argument]
 
*[http://mathworld.wolfram.com/ComplexArgument.html Complex Argument]
 +
 +
 +
 +
 +
*[[Z_API_Functions | List of Main Z Functions]]
 +
 +
*[[ Z3 |  Z3 home ]]

Latest revision as of 03:18, 23 October 2020

IMARGUMENT(Complexnumber)


  • Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle Complexnumber} is of the form .
    • IMARGUMENT(), returns the argument theta, an angle expressed in radians

Description

  • This function gives the principal value of an argument of a complex-valued expression Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle z} .
  • i.e The angle from the positive axis to the line segment is called the Argument of a complex number.
  • In this function angle value is in Radians.
  • Here Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle IMARGUMENT(Complexnumber)} , Where Complexnumber in the form of Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle z=x+iy} . i.e Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x} & Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle y} are the real numbers.
  • Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle I} imaginary unit .Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle i=\sqrt{-1}} .
  • An argument of the complex number Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle z = x + iy} is any real quantity Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \phi} such that Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle z = x + i y} = Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r cos(\phi) + i r sin(\phi)} for some positive real number Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r} .
  • Where Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r = |z| = \sqrt{x^2+y^2}} and Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \phi \in (-\pi,\pi]} .
  • The argument of a complex number is calculated by Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle arg(z)= tan^{-1}(\frac{y}{x}) =\theta} in Radians.
  • To change the Radian value to Degree we can use DEGREES function or we can multiply the answer with  .
  • We can use COMPLEX function to convert real and imaginary number in to a complex number.

ZOS

  • The syntax is to calculate argument of a complex number in ZOS is Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle IMARGUMENT(Complexnumber)} .
    • Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle Complexnumber} is of the form Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle z=x+iy} .
  • For e.g.,IMARGUMENT("6.72+1.5i")
Imargument

Examples

  1. IMARGUMENT("3-2i") = -0.5880026035475675
  2. IMARGUMENT("5+6i") = 0.8760580505981934
  3. IMARGUMENT("2") = 0
  4. IMARGUMENT("4i") = 1.5707963267948966
  5. DEGREES(IMARGUMENT("2+2i")) = 45°

Related Videos

Complex Number Analysis

See Also

References