Difference between revisions of "Manuals/calci/IMDIV"

From ZCubes Wiki
Jump to navigation Jump to search
 
(3 intermediate revisions by 2 users not shown)
Line 1: Line 1:
<div style="font-size:30px">'''IMDIV(ComplexNumber1,ComplexNumber2)'''</div><br/>
+
<div style="font-size:30px">'''IMDIV()'''</div><br/>
*<math>ComplexNumber1</math> and <math>ComplexNumber2</math> are in the form of a+bi.
+
*Parameters are any complex numbers of the form of a+ib.
 +
**IMDIV(),returns the quotient of two complex numbers
  
 
==Description==
 
==Description==
Line 6: Line 7:
 
*This function gives the division of two complex numbers.  
 
*This function gives the division of two complex numbers.  
 
*This function used to remove the <math>i</math> (imaginary unit) from the denominator.
 
*This function used to remove the <math>i</math> (imaginary unit) from the denominator.
*<math>ComplexNumber1</math> and <math>ComplexNumber2</math> are in the form  of <math>a+ib</math> and <math>c+id</math>, where <math>a,b,c</math> & <math>d</math> are real numbers <math>i</math> is the imaginary unit, <math>i=\sqrt{-1}</math>.
+
*The two Parameters are in the form  of <math>a+ib</math> and <math>c+id</math>, where <math>a,b,c</math> & <math>d</math> are real numbers <math>i</math> is the imaginary unit, <math>i=\sqrt{-1}</math>.
 
*Let z1 and z2 are the two Complex Numbers.
 
*Let z1 and z2 are the two Complex Numbers.
 
*To do the division of complex number we have follow the steps:
 
*To do the division of complex number we have follow the steps:
Line 16: Line 17:
  
 
==ZOS==
 
==ZOS==
*The syntax is to calculate the IMDIV in ZOS is <math>IMDIV(ComplexNumber1,ComplexNumber2)</math>.
+
*The syntax is to calculate the IMDIV in ZOS is <math>IMDIV()</math>.
**<math>ComplexNumber1</math> and <math>ComplexNumber2</math> are in the form of a+bi.
+
**Parameters are any complex numbers of the form of a+ib.
 
*For e.g.,IMDIV("3+2i","3-2i")
 
*For e.g.,IMDIV("3+2i","3-2i")
  
Line 24: Line 25:
 
==Examples==
 
==Examples==
 
#IMDIV("4+2i","3-i") =<math>\frac{4+2i}{3-i}*\frac{3+i}{3+i}</math> = <math>\frac{12+10i+2i^2}{3^2-i^2} = 10+\frac{10i}{10}</math> (because <math>i^2=-1</math>) = <math> 1+\frac{i}{1} = 1+1i </math>
 
#IMDIV("4+2i","3-i") =<math>\frac{4+2i}{3-i}*\frac{3+i}{3+i}</math> = <math>\frac{12+10i+2i^2}{3^2-i^2} = 10+\frac{10i}{10}</math> (because <math>i^2=-1</math>) = <math> 1+\frac{i}{1} = 1+1i </math>
#IMDIV("3-5i,2-6i") = 0.9+0.2i
+
#IMDIV("3-5i","2-6i") = 0.9+0.2i
 
#IMDIV("5","2+3i") = 0.7692307692307693 + -1.1538461538461537i
 
#IMDIV("5","2+3i") = 0.7692307692307693 + -1.1538461538461537i
 
#IMDIV("1+i","2") = 0.5+0.5i
 
#IMDIV("1+i","2") = 0.5+0.5i
Line 40: Line 41:
 
==References==
 
==References==
 
[http://en.wikipedia.org/wiki/Complex_division  Complex Division]
 
[http://en.wikipedia.org/wiki/Complex_division  Complex Division]
 +
 +
 +
 +
*[[Z_API_Functions | List of Main Z Functions]]
 +
 +
*[[ Z3 |  Z3 home ]]

Latest revision as of 15:34, 19 July 2018

IMDIV()


  • Parameters are any complex numbers of the form of a+ib.
    • IMDIV(),returns the quotient of two complex numbers

Description

  • This function gives the division of two complex numbers.
  • This function used to remove the (imaginary unit) from the denominator.
  • The two Parameters are in the form of and , where & are real numbers is the imaginary unit, .
  • Let z1 and z2 are the two Complex Numbers.
  • To do the division of complex number we have follow the steps:
step 1: Write the complex number in the fraction form.
step 2: Find the conjugate of the denominator.
step 3: Multiply the numerator and denominator with conjugate.
.
  • To find the Conjugate of a Complex Number we can use the function IMCONJUGATE.

ZOS

  • The syntax is to calculate the IMDIV in ZOS is .
    • Parameters are any complex numbers of the form of a+ib.
  • For e.g.,IMDIV("3+2i","3-2i")
ImDiv

Examples

  1. IMDIV("4+2i","3-i") = = (because ) =
  2. IMDIV("3-5i","2-6i") = 0.9+0.2i
  3. IMDIV("5","2+3i") = 0.7692307692307693 + -1.1538461538461537i
  4. IMDIV("1+i","2") = 0.5+0.5i

Related Videos

Dividing Complex Numbers

See Also


References

Complex Division