Difference between revisions of "Manuals/calci/TTESTTWOSAMPLESEQUALVARIANCES"
Jump to navigation
Jump to search
| (7 intermediate revisions by 2 users not shown) | |||
| Line 1: | Line 1: | ||
| − | + | ||
| − | <div style="font-size: | + | <div style="font-size:25px">'''TTESTTWOSAMPLESEQUALVARIANCES (Array1,Array2,HypothesizedMeanDifference,Alpha,NewTableFlag)'''</div><br/> |
| − | *<math> | + | *<math>Array1 </math> and <math> Array2 </math> are set of values. |
| − | *<math> | + | *<math>HypothesizedMeanDifference </math> is the Hypothesized Mean Difference. |
| − | *<math> | + | *<math> Alpha </math> is the significance level. |
| − | *<math> | + | *<math> NewTableFlag </math> is either 0 or 1. |
| + | **TTESTTWOSAMPLESEQUALVARIANCES(), determines whether two sample means are equal. | ||
==Description== | ==Description== | ||
| Line 11: | Line 12: | ||
*1.The two sample sizes are equal; | *1.The two sample sizes are equal; | ||
*2.It can be assumed that the two distributions have the same variance. | *2.It can be assumed that the two distributions have the same variance. | ||
| − | *In <math>TTESTTWOSAMPLESEQUALVARIANCES( | + | *In <math>TTESTTWOSAMPLESEQUALVARIANCES (Array1,Array2,HypothesizedMeanDifference,Alpha,NewTableFlag)</math>, <math>Array1 </math> and <math> Array2 </math> are two arrays of sample values. <math> HypothesizedMeanDifference </math> is the Hypothesized Mean Difference . |
| − | *Suppose | + | *Suppose HypothesizedMeanDifference=0 which indicates that sample means are hypothesized to be equal. |
| − | *<math> | + | *<math> Alpha </math> is the significance level which ranges from 0 to 1. |
| − | *<math> | + | *<math> NewTableFlag </math> is either 0 or 1. |
| − | * | + | *"1" is indicating the result will display in new worksheet.Suppose we are omitted the NewTableFlag value it will consider the value as "0". |
*The t statistic of this function calculated by: | *The t statistic of this function calculated by: | ||
<math>t = \frac{\bar{x_1}-\bar{x_2}}{s_{x1}.s_{x2}.\sqrt{\frac{2}{n}}}</math> | <math>t = \frac{\bar{x_1}-\bar{x_2}}{s_{x1}.s_{x2}.\sqrt{\frac{2}{n}}}</math> | ||
| Line 22: | Line 23: | ||
*This function will give the result as error when | *This function will give the result as error when | ||
1.any one of the argument is non-numeric. | 1.any one of the argument is non-numeric. | ||
| − | 2. | + | 2.Alpha>1 |
| − | 3.<math> | + | 3.<math>Array1 </math> and <math> Array2 </math> are having different number of data points. |
| + | |||
| + | ==Examples== | ||
| + | {| class="wikitable" | ||
| + | |+Spreadsheet | ||
| + | |- | ||
| + | ! !! A !! B !! C !! D!! E !! F | ||
| + | |- | ||
| + | ! 1 | ||
| + | | 10 || 15 || 18 || 27 || 12 || 34 | ||
| + | |- | ||
| + | ! 2 | ||
| + | | 17 || 20 || 25 || 39 || 9 || 14 | ||
| + | |} | ||
| + | |||
| + | #=TTESTTWOSAMPLESEQUALVARIANCES(A1:F1,A2:F2,2,0.5,0) | ||
| + | {| class="wikitable" | ||
| + | |+t-Test: Two-Sample Assuming Equal Variances | ||
| + | |- | ||
| + | ! !! Variable 1 !! Variable 2 | ||
| + | |- | ||
| + | ! Mean | ||
| + | | 19.333333333333332 || 20.666666666666668 | ||
| + | |- | ||
| + | ! Variance | ||
| + | | 87.06666666666666 || 109.86666666666667 | ||
| + | |- | ||
| + | ! Observations | ||
| + | | 6 || 6 | ||
| + | |- | ||
| + | ! Pooled Variance | ||
| + | | 98.46666666666667 | ||
| + | |- | ||
| + | ! Hypothesized Mean Difference | ||
| + | | 2 | ||
| + | |- | ||
| + | ! Degree Of Freedom | ||
| + | | 10 | ||
| + | |- | ||
| + | ! T- Statistics | ||
| + | | -0.5818281835787091 | ||
| + | |- | ||
| + | ! P(T<=t) One-tail | ||
| + | | 0.28678199670723614 | ||
| + | |- | ||
| + | ! T Critical One-Tail | ||
| + | | 0 | ||
| + | |- | ||
| + | ! P(T<=t) Two-tail | ||
| + | | 0.5735639934144723 | ||
| + | |- | ||
| + | ! T Critical Two-Tail | ||
| + | | 0.6998120613365443 | ||
| + | |} | ||
| + | |||
| + | ==Related Videos== | ||
| + | |||
| + | {{#ev:youtube|v=-pTbC_tBy6w|280|center|T Test two sample Equal variances}} | ||
| + | |||
| + | ==See Also== | ||
| + | *[[Manuals/calci/TTEST | TTEST ]] | ||
| + | *[[Manuals/calci/TDIST | TDIST ]] | ||
| + | *[[Manuals/calci/TINV | TINV ]] | ||
| + | *[[Manuals/calci/TTESTTWOSAMPLESUNEQUALVARIANCES | TTESTTWOSAMPLESUNEQUALVARIANCES ]] | ||
| + | |||
| + | ==References== | ||
| + | *[http://en.wikipedia.org/wiki/Student%27s_t-test Student's t-distribution] | ||
| + | |||
| + | |||
| + | |||
| + | *[[Z_API_Functions | List of Main Z Functions]] | ||
| + | |||
| + | *[[ Z3 | Z3 home ]] | ||
Latest revision as of 14:48, 6 December 2018
TTESTTWOSAMPLESEQUALVARIANCES (Array1,Array2,HypothesizedMeanDifference,Alpha,NewTableFlag)
- and are set of values.
- is the Hypothesized Mean Difference.
- is the significance level.
- is either 0 or 1.
- TTESTTWOSAMPLESEQUALVARIANCES(), determines whether two sample means are equal.
Description
- This function calculating the two Sample for equal variances determines whether two sample means are equal.
- We can use this test when both:
- 1.The two sample sizes are equal;
- 2.It can be assumed that the two distributions have the same variance.
- In , and are two arrays of sample values. is the Hypothesized Mean Difference .
- Suppose HypothesizedMeanDifference=0 which indicates that sample means are hypothesized to be equal.
- is the significance level which ranges from 0 to 1.
- is either 0 or 1.
- "1" is indicating the result will display in new worksheet.Suppose we are omitted the NewTableFlag value it will consider the value as "0".
- The t statistic of this function calculated by:
where
- Here and are unbiased estimators of the variances of two samples. is the grand standard deviation data 1 and data2 and n is the data points of two data set.
- This function will give the result as error when
1.any one of the argument is non-numeric. 2.Alpha>1 3. and are having different number of data points.
Examples
| A | B | C | D | E | F | |
|---|---|---|---|---|---|---|
| 1 | 10 | 15 | 18 | 27 | 12 | 34 |
| 2 | 17 | 20 | 25 | 39 | 9 | 14 |
- =TTESTTWOSAMPLESEQUALVARIANCES(A1:F1,A2:F2,2,0.5,0)
| Variable 1 | Variable 2 | |
|---|---|---|
| Mean | 19.333333333333332 | 20.666666666666668 |
| Variance | 87.06666666666666 | 109.86666666666667 |
| Observations | 6 | 6 |
| Pooled Variance | 98.46666666666667 | |
| Hypothesized Mean Difference | 2 | |
| Degree Of Freedom | 10 | |
| T- Statistics | -0.5818281835787091 | |
| P(T<=t) One-tail | 0.28678199670723614 | |
| T Critical One-Tail | 0 | |
| P(T<=t) Two-tail | 0.5735639934144723 | |
| T Critical Two-Tail | 0.6998120613365443 |
Related Videos
See Also
References