Difference between revisions of "Manuals/calci/IMDIV"

From ZCubes Wiki
Jump to navigation Jump to search
Line 1: Line 1:
<div style="font-size:30px">'''IMDIV(z1,z2)'''</div><br/>
+
<div style="font-size:30px">'''IMDIV(ComplexNumber1,ComplexNumber2)'''</div><br/>
*<math>z1</math> and <math>z2</math> are complex numbers.
+
*<math>ComplexNumber1</math> and <math>ComplexNumber2</math> are in the form of a+bi.
 +
 
 
==Description==
 
==Description==
 +
 
*This function gives the division of two complex numbers.  
 
*This function gives the division of two complex numbers.  
 
*This function used to remove the <math>i</math> (imaginary unit) from the denominator.
 
*This function used to remove the <math>i</math> (imaginary unit) from the denominator.
*<math>z1,z2</math> are the two complex numbers in the form of <math>z1=a+ib</math> and <math>z2=c+id</math>, where <math>a,b,c</math> & <math>d</math> are real numbers <math>i</math> is the imaginary unit, <math>i=\sqrt{-1}</math>.
+
*<math>ComplexNumber1</math> and <math>ComplexNumber2</math> are in the form of <math>a+ib</math> and <math>c+id</math>, where <math>a,b,c</math> & <math>d</math> are real numbers <math>i</math> is the imaginary unit, <math>i=\sqrt{-1}</math>.
 +
*Let z1 and z2 are the two Complex Numbers.
 
*To do the division of complex number we have follow the steps:
 
*To do the division of complex number we have follow the steps:
 
  step 1: Write the complex number in the fraction form.
 
  step 1: Write the complex number in the fraction form.
 
  step 2: Find the conjugate of the denominator.
 
  step 2: Find the conjugate of the denominator.
 
  step 3: Multiply the numerator and denominator with conjugate.
 
  step 3: Multiply the numerator and denominator with conjugate.
:<math>IMDIV(z1,z2) = \frac{a+ib}{c+id} = \frac{a+ib}{c+id}*\frac{c-id}{c-id} =\frac{ac+bd}{c^2+d^2}+\frac{(bc-ad)i}{(c^2+d^2)}</math>
+
:<math>IMDIV(z1,z2) = \frac{a+ib}{c+id} = \frac{a+ib}{c+id}*\frac{c-id}{c-id} =\frac{ac+bd}{c^2+d^2}+\frac{(bc-ad)i}{(c^2+d^2)}</math>.
 +
*To find the Conjugate of a Complex Number we can use the function [[Manuals/calci/IMCONJUGATE  | IMCONJUGATE]].
 +
 
 +
==ZOS Section==
 +
*The syntax is to calculate the IMDIV in ZOS is <math>IMDIV(ComplexNumber1,ComplexNumber2)</math>.
 +
**<math>ComplexNumber1</math> and <math>ComplexNumber2</math> are in the form of a+bi.
 +
*For e.g.,IMDIV("3+2i","3-2i")
  
 
==Examples==
 
==Examples==

Revision as of 04:06, 24 April 2014

IMDIV(ComplexNumber1,ComplexNumber2)


  • and are in the form of a+bi.

Description

  • This function gives the division of two complex numbers.
  • This function used to remove the (imaginary unit) from the denominator.
  • and are in the form of and , where & are real numbers is the imaginary unit, .
  • Let z1 and z2 are the two Complex Numbers.
  • To do the division of complex number we have follow the steps:
step 1: Write the complex number in the fraction form.
step 2: Find the conjugate of the denominator.
step 3: Multiply the numerator and denominator with conjugate.
.
  • To find the Conjugate of a Complex Number we can use the function IMCONJUGATE.

ZOS Section

  • The syntax is to calculate the IMDIV in ZOS is .
    • and are in the form of a+bi.
  • For e.g.,IMDIV("3+2i","3-2i")

Examples

  1. IMDIV("4+2i","3-i") = = (because ) =
  2. IMDIV("3-5i,2-6i") = 0.9+0.2i
  3. IMDIV("5","2+3i") = 0.769-1.153i
  4. IMDIV("1+i","2") = 0.5+0.5i

See Also


References

Complex Division