Difference between revisions of "Manuals/calci/IMSUB"

From ZCubes Wiki
Jump to navigation Jump to search
Line 7: Line 7:
 
*IMSUB(z1,z2), Where <math> z1,z2</math>  are  the complex number is of the form  <math>a+ib</math>.
 
*IMSUB(z1,z2), Where <math> z1,z2</math>  are  the complex number is of the form  <math>a+ib</math>.
 
*<math> a </math>& <math>b</math> are the real numbers. <math>i</math> imaginary unit .<math>i=\sqrt{-1}</math>.
 
*<math> a </math>& <math>b</math> are the real numbers. <math>i</math> imaginary unit .<math>i=\sqrt{-1}</math>.
* Let <math>z1=a+ib</math> and </math>z2=c+id</math>.
+
* Let <math>z1=a+ib</math> and <math>z2=c+id</math>.
 
*The difference of two complex number is:<math>(a+ib)-(c+id)=(a-c)+(b-d)i </math> where <math>a,b,c</math> and <math>d</math> are real numbers.
 
*The difference of two complex number is:<math>(a+ib)-(c+id)=(a-c)+(b-d)i </math> where <math>a,b,c</math> and <math>d</math> are real numbers.
 
*We can use COMPLEX function to convert real and imaginary number in to a complex number.
 
*We can use COMPLEX function to convert real and imaginary number in to a complex number.

Revision as of 23:36, 25 December 2013

IMSUB(z1,z2)


  • are the complex numbers is of the form

Description

  • This function gives the difference of the two complex numbers.
  • IMSUB(z1,z2), Where are the complex number is of the form .
  • & are the real numbers. imaginary unit ..
  • Let and .
  • The difference of two complex number is: where and are real numbers.
  • We can use COMPLEX function to convert real and imaginary number in to a complex number.

Examples

  1. IMSUB("6+4i","5+3i")=1+1i
  2. IMSUB("3+4i","6+7i")=-3-3i
  3. IMSUB("8","9+10i")=-1-10i
  4. IMSUB("5+7i","3")=2+7i

See Also


References

Binary Logarithm