Difference between revisions of "Manuals/calci/IMEXP"
Jump to navigation
Jump to search
Line 41: | Line 41: | ||
==References== | ==References== | ||
[http://en.wikipedia.org/wiki/Exponential_function Exponential function] | [http://en.wikipedia.org/wiki/Exponential_function Exponential function] | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | *[[Z_API_Functions | List of Main Z Functions]] | ||
+ | |||
+ | *[[ Z3 | Z3 home ]] |
Revision as of 08:09, 13 March 2017
IMEXP(ComplexNumber)
- is of the form a+bi.
Description
- This function gives the exponential of a complex number.
- In , is of the form , & are real numbers & is the imaginary unit. .
- Euler's formula states that , for any real number and is the base of the natural logarithm.
- The approximate value of the constant e=2.718281828459045 and it is equal to .
- Let z be the Complex Number.Then the exponential of a complex number is : .
- Here Sin and Cos are trignometric functions. y is angle value in radians.
- When imaginary part is '0', it will give the exponent value of the real number. i.e when imaginary number is '0'.
- The Complex exponential function is denoted by "cis(x)"(Cosine plus iSine)
- We can use COMPLEX function to convert the real and imaginary coefficients to a complex number.
ZOS
- The syntax is to calculate IMEXP in ZOS is .
- is of the form a+bi.
- For e.g.,IMEXP("0.3-0.54i")
Examples
- =IMEXP("2+3i") = -7.315110094901102+1.0427436562359i
- =IMEXP("4-5i") = 15.4874305606508+52.355491418482i
- =IMEXP("6") = 403.428793492735+0i
- =IMEXP("2i") = -0.416146836547142+0.909297426825682i
- =IMEXP("0") = 1+0i and IMEXP("0i") = 1+0i
Related Videos
See Also
References