Difference between revisions of "Manuals/calci/SQRTPI"

From ZCubes Wiki
Jump to navigation Jump to search
Line 8: Line 8:
 
*<math> PI()</math> is denoted by the Greek letter <math> \pi</math>.  
 
*<math> PI()</math> is denoted by the Greek letter <math> \pi</math>.  
 
*<math> \pi </math> is a transcendental number and irrational number.  
 
*<math> \pi </math> is a transcendental number and irrational number.  
*Being an irrational number,<math> π </math> cannot be expressed exactly as a ratio of any two integers ,but we can express as the fraction 22/7 is approximate to the  π value , also no fraction can be its exact value.  
+
*Being an irrational number, <math> \pi </math> cannot be expressed exactly as a ratio of any two integers, but we can express as the fraction 22/7 is approximate to the  <math> \pi </math> value, also no fraction can be its exact value.  
       This function will give the result as error when n<0.
+
       This function will give the result as error when <math>n<0</math>.
  
 
==Examples==
 
==Examples==

Revision as of 00:26, 5 February 2014

SQRTPI(n)


  • Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle n } is the number.

Description

  • This function gives the square root of Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (pi*n)} .
  • The Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle pi} is a mathematical constant with a value approximate to 3.14159.
  • In Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle SQRTPI(n)} , Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle n} is the number by which Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle p } is multiplied. When we are omitting the value of Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle n} , then it will consider the value Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle n=1} .
  • is denoted by the Greek letter Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \pi} .
  • Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \pi } is a transcendental number and irrational number.
  • Being an irrational number, Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \pi } cannot be expressed exactly as a ratio of any two integers, but we can express as the fraction 22/7 is approximate to the Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \pi } value, also no fraction can be its exact value.
     This function will give the result as error when Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle n<0}
.

Examples

  1. =SQRTPI(1) = 1.772453851
  2. =SQRTPI(0) = 0
  3. =SQRTPI(5) = 3.963327298
  4. =SQRTPI(-2) = NAN


See Also


References