Difference between revisions of "Manuals/calci/IMDIV"
Jump to navigation
Jump to search
Line 1: | Line 1: | ||
− | <div style="font-size:30px">'''IMDIV( | + | <div style="font-size:30px">'''IMDIV(ComplexNumber1,ComplexNumber2)'''</div><br/> |
− | *<math> | + | *<math>ComplexNumber1</math> and <math>ComplexNumber2</math> are in the form of a+bi. |
+ | |||
==Description== | ==Description== | ||
+ | |||
*This function gives the division of two complex numbers. | *This function gives the division of two complex numbers. | ||
*This function used to remove the <math>i</math> (imaginary unit) from the denominator. | *This function used to remove the <math>i</math> (imaginary unit) from the denominator. | ||
− | *<math> | + | *<math>ComplexNumber1</math> and <math>ComplexNumber2</math> are in the form of <math>a+ib</math> and <math>c+id</math>, where <math>a,b,c</math> & <math>d</math> are real numbers <math>i</math> is the imaginary unit, <math>i=\sqrt{-1}</math>. |
+ | *Let z1 and z2 are the two Complex Numbers. | ||
*To do the division of complex number we have follow the steps: | *To do the division of complex number we have follow the steps: | ||
step 1: Write the complex number in the fraction form. | step 1: Write the complex number in the fraction form. | ||
step 2: Find the conjugate of the denominator. | step 2: Find the conjugate of the denominator. | ||
step 3: Multiply the numerator and denominator with conjugate. | step 3: Multiply the numerator and denominator with conjugate. | ||
− | :<math>IMDIV(z1,z2) = \frac{a+ib}{c+id} = \frac{a+ib}{c+id}*\frac{c-id}{c-id} =\frac{ac+bd}{c^2+d^2}+\frac{(bc-ad)i}{(c^2+d^2)}</math> | + | :<math>IMDIV(z1,z2) = \frac{a+ib}{c+id} = \frac{a+ib}{c+id}*\frac{c-id}{c-id} =\frac{ac+bd}{c^2+d^2}+\frac{(bc-ad)i}{(c^2+d^2)}</math>. |
+ | *To find the Conjugate of a Complex Number we can use the function [[Manuals/calci/IMCONJUGATE | IMCONJUGATE]]. | ||
+ | |||
+ | ==ZOS Section== | ||
+ | *The syntax is to calculate the IMDIV in ZOS is <math>IMDIV(ComplexNumber1,ComplexNumber2)</math>. | ||
+ | **<math>ComplexNumber1</math> and <math>ComplexNumber2</math> are in the form of a+bi. | ||
+ | *For e.g.,IMDIV("3+2i","3-2i") | ||
==Examples== | ==Examples== |
Revision as of 04:06, 24 April 2014
IMDIV(ComplexNumber1,ComplexNumber2)
- and are in the form of a+bi.
Description
- This function gives the division of two complex numbers.
- This function used to remove the (imaginary unit) from the denominator.
- and are in the form of and , where & are real numbers is the imaginary unit, .
- Let z1 and z2 are the two Complex Numbers.
- To do the division of complex number we have follow the steps:
step 1: Write the complex number in the fraction form. step 2: Find the conjugate of the denominator. step 3: Multiply the numerator and denominator with conjugate.
- .
- To find the Conjugate of a Complex Number we can use the function IMCONJUGATE.
ZOS Section
- The syntax is to calculate the IMDIV in ZOS is .
- and are in the form of a+bi.
- For e.g.,IMDIV("3+2i","3-2i")
Examples
- IMDIV("4+2i","3-i") = = (because ) =
- IMDIV("3-5i,2-6i") = 0.9+0.2i
- IMDIV("5","2+3i") = 0.769-1.153i
- IMDIV("1+i","2") = 0.5+0.5i
See Also