Manuals/calci/DOTPRODUCT

From ZCubes Wiki
Revision as of 13:59, 5 May 2017 by Devika (talk | contribs)
Jump to navigation Jump to search
DOTPRODUCT(a,b)


  • Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle a} and Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle b} are any two set values.

Description

  • This function shows the Dot product of the given numbers.
  • Dot product is also called Scalar Product.
  • This product is an example of an Inner product.
  • Dot product is the algebraic operation which calculates with the two equal length values and gives the single value as result.
  • Here a and b are two set of values with any real numbers.
  • Also a and b are having same length of values.
  • Dot product of two vectors is defined as: Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle a=[a_1,a_2,a_3..a_n]} and Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle b=[b_1,b_2,b_3..b_n]} then Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle a.b= \sum_{i=1}^n a_{i}b_{i}= a_1b_1+a_2b_2+...a_nb_n} where Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Sigma} denotes summation notation and Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle n} is the dimension of the vector space.

Examples

  1. DOTPRODUCT([3,6,9],[10,12,7]) = 165
  2. DOTPRODUCT([2.5,5.9,6.25],[9,12,13.04]) = 174.8
  3. DOTPRODUCT([-7,-3,5],[101,231,-432]) = -3560
  4. DOTPRODUCT([2/3,8/6,10/3],[2,4,6]) = 26.666666666666664

See Also

References

| Dot Product