Manuals/calci/IMDIV
IMDIV(ComplexNumber1,ComplexNumber2)
- and are in the form of a+bi.
Description
- This function gives the division of two complex numbers.
- This function used to remove the (imaginary unit) from the denominator.
- and are in the form of and , where & are real numbers is the imaginary unit, .
- Let z1 and z2 are the two Complex Numbers.
- To do the division of complex number we have follow the steps:
step 1: Write the complex number in the fraction form. step 2: Find the conjugate of the denominator. step 3: Multiply the numerator and denominator with conjugate.
- .
- To find the Conjugate of a Complex Number we can use the function IMCONJUGATE.
ZOS
- The syntax is to calculate the IMDIV in ZOS is .
- and are in the form of a+bi.
- For e.g.,IMDIV("3+2i","3-2i")
Examples
- IMDIV("4+2i","3-i") = = Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{12+10i+2i^2}{3^2-i^2} = 10+\frac{10i}{10}} (because Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle i^2=-1} ) = Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 1+\frac{i}{1} = 1+1i }
- IMDIV("3-5i,2-6i") = 0.9+0.2i
- IMDIV("5","2+3i") = 0.7692307692307693 + -1.1538461538461537i
- IMDIV("1+i","2") = 0.5+0.5i
Related Videos
See Also