Difference between revisions of "Manuals/calci/IMSUB"

From ZCubes Wiki
Jump to navigation Jump to search
 
(4 intermediate revisions by 4 users not shown)
Line 1: Line 1:
<div style="font-size:30px">'''IMSUB(Complexnumber1,Complexnumber2)'''</div><br/>
+
<div style="font-size:30px">'''IMSUB()'''</div><br/>
* <math>Complexnumbers</math> are of the form <math>z=a+ib</math>  
+
*Parameters is of the form <math>z=a+ib</math>.
 +
**IMSUB(), returns the difference between two complex numbers.
 +
 
  
 
==Description==
 
==Description==
  
 
*This function gives the difference of the two complex numbers.
 
*This function gives the difference of the two complex numbers.
*In <math>IMSUB(Complexnumber1,Complexnumber2)</math>, where  Complexnumbers are of the form  <math>z=a+ib</math>.
+
*In <math>IMSUB()</math>, Parameters is of the form  <math>z=a+ib</math>.
 
*<math> a </math>& <math>b</math> are the real numbers. <math>i</math> imaginary unit .<math>i=\sqrt{-1}</math>.
 
*<math> a </math>& <math>b</math> are the real numbers. <math>i</math> imaginary unit .<math>i=\sqrt{-1}</math>.
*Let <math>z1=a+ib</math> and <math>z2=c+id</math>.
+
*Consider two complex numbers z1 and z2 are of the form <math>z1=a+ib</math> and <math>z2=c+id</math>.
 
*The difference of two complex number is:<math>(a+ib)-(c+id)=(a-c)+(b-d)i </math> where <math>a,b,c</math> and <math>d</math> are real numbers.
 
*The difference of two complex number is:<math>(a+ib)-(c+id)=(a-c)+(b-d)i </math> where <math>a,b,c</math> and <math>d</math> are real numbers.
 
*We can use [[Manuals/calci/COMPLEX| COMPLEX]]  function to convert real and imaginary number in to a complex number.
 
*We can use [[Manuals/calci/COMPLEX| COMPLEX]]  function to convert real and imaginary number in to a complex number.
  
==ZOS Section==
+
==ZOS==
*The syntax is to calculate the difference of the complex numbers in ZOS is <math>IMSUB(Complexnumber1,Complexnumber2)</math>.
+
*The syntax is to calculate the difference of the complex numbers in ZOS is <math>IMSUB()</math>.
** <math>Complexnumbers</math> are of the form <math>z=a+ib</math>  
+
** Parameters is of the form <math>z=a+ib</math>  
 
*For e.g.,IMSUB("4+5i","9-3i")
 
*For e.g.,IMSUB("4+5i","9-3i")
 +
{{#ev:youtube|uwZpbnOz1w4|280|center|Imsub}}
  
 
==Examples==
 
==Examples==
Line 21: Line 24:
 
#IMSUB("8","9+10i")=-1-10i
 
#IMSUB("8","9+10i")=-1-10i
 
#IMSUB("5+7i","3")=2+7i
 
#IMSUB("5+7i","3")=2+7i
 +
 +
==Related Videos==
 +
 +
{{#ev:youtube|tvXRaZbIjO8|280|center|IMSUB}}
  
 
==See Also==
 
==See Also==
Line 30: Line 37:
 
==References==
 
==References==
 
[http://en.wikipedia.org/wiki/Complex_number  Complex number]
 
[http://en.wikipedia.org/wiki/Complex_number  Complex number]
 +
 +
 +
 +
*[[Z_API_Functions | List of Main Z Functions]]
 +
 +
*[[ Z3 |  Z3 home ]]

Latest revision as of 15:13, 18 July 2018

IMSUB()


  • Parameters is of the form .
    • IMSUB(), returns the difference between two complex numbers.


Description

  • This function gives the difference of the two complex numbers.
  • In , Parameters is of the form .
  • & are the real numbers. imaginary unit ..
  • Consider two complex numbers z1 and z2 are of the form and .
  • The difference of two complex number is: where and are real numbers.
  • We can use COMPLEX function to convert real and imaginary number in to a complex number.

ZOS

  • The syntax is to calculate the difference of the complex numbers in ZOS is .
    • Parameters is of the form
  • For e.g.,IMSUB("4+5i","9-3i")
Imsub

Examples

  1. IMSUB("6+4i","5+3i")=1+1i
  2. IMSUB("3+4i","6+7i")=-3-3i
  3. IMSUB("8","9+10i")=-1-10i
  4. IMSUB("5+7i","3")=2+7i

Related Videos

IMSUB

See Also

References

Complex number