Difference between revisions of "Manuals/calci/IMDIV"

From ZCubes Wiki
Jump to navigation Jump to search
Line 1: Line 1:
<div style="font-size:30px">'''IMDIV(ComplexNumber1,ComplexNumber2)'''</div><br/>
+
<div style="font-size:30px">'''IMDIV()'''</div><br/>
*<math>ComplexNumber1</math> and <math>ComplexNumber2</math> are in the form of a+bi.
+
*Parameters are in the form of a+bi.
 +
**IMDIV(),returns the quotient of two complex numbers
  
 
==Description==
 
==Description==
Line 6: Line 7:
 
*This function gives the division of two complex numbers.  
 
*This function gives the division of two complex numbers.  
 
*This function used to remove the <math>i</math> (imaginary unit) from the denominator.
 
*This function used to remove the <math>i</math> (imaginary unit) from the denominator.
*<math>ComplexNumber1</math> and <math>ComplexNumber2</math> are in the form  of <math>a+ib</math> and <math>c+id</math>, where <math>a,b,c</math> & <math>d</math> are real numbers <math>i</math> is the imaginary unit, <math>i=\sqrt{-1}</math>.
+
*The two Parameters are in the form  of <math>a+ib</math> and <math>c+id</math>, where <math>a,b,c</math> & <math>d</math> are real numbers <math>i</math> is the imaginary unit, <math>i=\sqrt{-1}</math>.
 
*Let z1 and z2 are the two Complex Numbers.
 
*Let z1 and z2 are the two Complex Numbers.
 
*To do the division of complex number we have follow the steps:
 
*To do the division of complex number we have follow the steps:
Line 16: Line 17:
  
 
==ZOS==
 
==ZOS==
*The syntax is to calculate the IMDIV in ZOS is <math>IMDIV(ComplexNumber1,ComplexNumber2)</math>.
+
*The syntax is to calculate the IMDIV in ZOS is <math>IMDIV()</math>.
**<math>ComplexNumber1</math> and <math>ComplexNumber2</math> are in the form of a+bi.
+
**Parameters are in the form of a+bi.
 
*For e.g.,IMDIV("3+2i","3-2i")
 
*For e.g.,IMDIV("3+2i","3-2i")
  

Revision as of 15:23, 16 July 2018

IMDIV()


  • Parameters are in the form of a+bi.
    • IMDIV(),returns the quotient of two complex numbers

Description

  • This function gives the division of two complex numbers.
  • This function used to remove the (imaginary unit) from the denominator.
  • The two Parameters are in the form of and , where & are real numbers is the imaginary unit, .
  • Let z1 and z2 are the two Complex Numbers.
  • To do the division of complex number we have follow the steps:
step 1: Write the complex number in the fraction form.
step 2: Find the conjugate of the denominator.
step 3: Multiply the numerator and denominator with conjugate.
.
  • To find the Conjugate of a Complex Number we can use the function IMCONJUGATE.

ZOS

  • The syntax is to calculate the IMDIV in ZOS is .
    • Parameters are in the form of a+bi.
  • For e.g.,IMDIV("3+2i","3-2i")
ImDiv

Examples

  1. IMDIV("4+2i","3-i") = = (because ) =
  2. IMDIV("3-5i","2-6i") = 0.9+0.2i
  3. IMDIV("5","2+3i") = 0.7692307692307693 + -1.1538461538461537i
  4. IMDIV("1+i","2") = 0.5+0.5i

Related Videos

Dividing Complex Numbers

See Also


References

Complex Division