Difference between revisions of "Manuals/calci/NORMDIST"

From ZCubes Wiki
Jump to navigation Jump to search
(Created page with "<div id="6SpaceContent" class="zcontent" align="left"><font color="#000000"><font face="Arial, sans-serif"><font size="2">'''NORMDIST'''</font></font><font face="Arial, sans-s...")
 
 
(21 intermediate revisions by 4 users not shown)
Line 1: Line 1:
<div id="6SpaceContent" class="zcontent" align="left"><font color="#000000"><font face="Arial, sans-serif"><font size="2">'''NORMDIST'''</font></font><font face="Arial, sans-serif"><font size="2">(</font></font><font face="Arial, sans-serif"><font size="2">'''n'''</font></font><font face="Arial, sans-serif"><font size="2">,</font></font><font face="Arial, sans-serif"><font size="2">''' m, sd'''</font></font><font face="Arial, sans-serif"><font size="2">,</font></font><font face="Arial, sans-serif"><font size="2">''' c'''</font></font><font face="Arial, sans-serif"><font size="2">)</font></font></font>
+
<div style="font-size:30px">'''NORMDIST (Number,Mean,StandardDeviation,Cumulative,accuracy)'''</div><br/>
 +
*<math>Number</math> is the value.
 +
*<math>Mean</math> is the mean.
 +
*<math>StandardDeviation</math> is the standard deviation
 +
*<math>Cumulative</math> is the logical value like TRUE or FALSE.
 +
*<math>Accuracy</math> is correct decimal places for the result.
 +
**NORMDIST(),returns the normal cumulative distribution.
  
<font color="#000000"><font face="Arial, sans-serif"><font size="2">'''Where n'''</font></font><font face="Arial, sans-serif"><font size="2">   is the value for which the distribution is calculate ,m is the arithmetic mean of the distribution and </font></font><font face="Arial, sans-serif"><font size="2">'''sd'''</font></font><font face="Arial, sans-serif"><font size="2">   is the standard deviation of the distribution.</font></font></font>
+
==Description==
 +
*This function gives the Normal Distribution for the particular Mean and Standard Deviation.
 +
*Normal Distribution is the function that represents the distribution of many random variables as a symmetrical bell-shaped graph.
 +
*This distribution is the Continuous Probability Distribution.It is also called Gaussian Distribution.
 +
*In <math>NORMDIST (Number,Mean,StandardDeviation,Cumulative,accuracy)</math>), <math>Number</math> is the value of the function, <math>Mean</math> is the Arithmetic Mean of the distribution, <math>StandardDeviation</math> is the Standard Deviation of the distribution and <math>Cumulative</math> is the Logical Value that indicating the form of the function.
 +
*Suppose <math>Cumulative</math> is TRUE, this function gives the Cumulative Distribution, and it is FALSE, this function gives the Probability Mass Function.
 +
*The equation for the Normal Distribution is:
 +
<math> f(x,\mu,\sigma)=\frac{1}{\sigma \sqrt{2\pi}}.e^{-\left({\tfrac{(x-\mu)^2}{2\sigma^2}}\right)}</math>
 +
where <math>\mu</math> is the Mean of the distribution, <math>\sigma</math> is the Standard Deviation of the distribution.
 +
*In this formula, suppose  <math>\mu</math> = 0 and <math>\sigma</math>= 1, then the distribution is called the Standard Normal Distribution or the Unit Normal Distribution.
 +
  This function will return the result as error when any one of the argument is non-numeric and <math>StandardDeviation<=0</math>.
 +
*when <math>Cumulative</math> is TRUE , this formula is the integral from <math>-\infty</math> to <math>Number</math> and <math>Cumulative</math> is FALSE , we can use the same formula.
  
<font color="#000000"><font face="Arial, sans-serif"><font size="2">'''c'''</font></font><font face="Arial, sans-serif"><font size="2">   is a logical value that determines the form of the function. </font></font></font>
+
==Examples==
 +
#=NORMDIST(37,29,2.1,FALSE) = 0.000134075
 +
#=NORMDIST(37,29,2.1,TRUE) = 0.99993041384
 +
#=NORMDIST(10.75,17.4,3.2,TRUE) = 0.01884908749
 +
#=NORMDIST(10.75,17.4,3.2,FALSE) = 0.014387563
  
</div>
+
==Related Videos==
----
 
<div id="1SpaceContent" class="zcontent" align="left"> 
 
  
<font color="#000000"><font face="Arial, sans-serif"><font size="2">It calculates the normal distribution for the specified mean and standard deviation. </font></font></font>
+
{{#ev:youtube|jMFs_1gmqWw|280|center|NORMDIST}}
  
</div>
+
==See Also==
----
+
*[[Manuals/calci/NORMINV  | NORMINV ]]
<div id="7SpaceContent" class="zcontent" align="left"><font size="2" color="#7f7f7f" face="Arial">
+
*[[Manuals/calci/NORMSDIST  | NORMSDIST ]]
 +
*[[Manuals/calci/NORMSINV  | NORMSINV ]]
  
·       <font color="#000000"><font face="Arial, sans-serif"><font size="2">NORMDIST displays error for nonnumeric sd. </font></font></font>
+
==References==
 +
[http://en.wikipedia.org/wiki/Normal_distribution Normal distribution ]
  
# <font color="#000000"><font face="Arial, sans-serif"><font size="2">When sd &lt;=0, NORMDIST displays error. </font></font></font>
 
# <font color="#000000"><font face="Arial, sans-serif"><font size="2">The equation for the normal density function (cumulative = FALSE) is: </font></font></font>
 
  
<br /><br />
 
  
</font></div>
+
*[[Z_API_Functions | List of Main Z Functions]]
----
 
<div id="12SpaceContent" class="zcontent" align="left"><div class="ZEditBox" align="left">
 
  
NORMDIST
+
*[[ Z3 Z3 home ]]
 
 
</div></div>
 
----
 
<div id="8SpaceContent" class="zcontent" align="left"> 
 
 
 
<font color="#000000"><font face="Times New Roman, serif"><font size="3">Let’s see an example in (Column1 Row 1, Column1Row2, Column1Row3)</font></font></font>
 
 
 
<font color="#000000"><font face="Times New Roman, serif"><font size="3">NORMDIST (C1R1, C1R2, C1R3)</font></font></font>
 
 
 
<font color="#000000"><font face="Times New Roman, serif"><font size="3">i.e. </font></font></font><font color="#000000"><font face="Trebuchet MS, sans-serif"><font size="3">=NORMDIST (52, 50, 2.5, true)</font></font></font><font color="#000000"><font face="Times New Roman, serif"><font size="3"> is 0.7885</font></font></font>
 
 
 
<font color="#000000"><font face="Trebuchet MS, sans-serif"><font size="3"><nowiki>=NORMDIST (52, 50, 2.5, false)</nowiki></font></font></font><font color="#000000"><font face="Times New Roman, serif"><font size="3"> is 0.1159.</font></font></font>
 
 
 
</div>
 
----
 
<div id="10SpaceContent" class="zcontent" align="left"><div class="ZEditBox" align="justify">Syntax </div><div class="ZEditBox"><center></center></div></div>
 
----
 
<div id="4SpaceContent" class="zcontent" align="left"><div class="ZEditBox" align="justify">Remarks </div></div>
 
----
 
<div id="3SpaceContent" class="zcontent" align="left"><div class="ZEditBox" align="justify">Examples </div></div>
 
----
 
<div id="11SpaceContent" class="zcontent" align="left"><div class="ZEditBox" align="justify">Description </div></div>
 
----
 
<div id="2SpaceContent" class="zcontent" align="left"><div>
 
 
 
{| id="TABLE3" class="SpreadSheet blue"
 
|- class="even"
 
| class=" " |
 
| Column1
 
| class="        " | Column2
 
| class="    " | Column3
 
| class="  " |
 
| class="  " | Column4
 
|
 
|- class="odd"
 
| class=" " | Row1
 
| class="sshl_f" | 52
 
| class="sshl_f" | 0.7885
 
| class="sshl_f" | 0.1159
 
| class="sshl_f" |
 
| class="sshl_f" |
 
|
 
|- class="even"
 
| class="  " | Row2
 
| class="sshl_f" | 50
 
| class="sshl_f" |
 
| class="sshl_f   SelectTD SelectTD" |
 
<div id="2Space_Handle" title="Click and Drag to resize CALCI Column/Row/Cell. It is EZ!"></div><div id="2Space_Copy" title="Click and Drag over to AutoFill other cells."></div>
 
| class="sshl_f" |
 
| class="sshl_f" |
 
|
 
|- class="odd"
 
| Row3
 
| class="sshl_f" | 2.5
 
| class="sshl_f" |
 
| class="sshl_f" |
 
| class="  " |
 
| class="sshl_f" |
 
|
 
|- class="even"
 
| Row4
 
| class="sshl_f  " |
 
<div id="2Space_Copy" title="Click and Drag over to AutoFill other cells."></div>
 
| class="sshl_f" |
 
|
 
| class=" " |
 
| class="sshl_f" |
 
|
 
|- class="odd"
 
| class="sshl_f" | Row5
 
| class="sshl_f" |
 
| class="  " |
 
|
 
|
 
| class="  " |
 
|
 
|- class="even"
 
| class=" " | Row6
 
| class="sshl_f" |
 
| class="sshl_f" |
 
|
 
| class="sshl_f" |
 
|
 
|
 
|}
 
 
 
<div align="left"></div>''''''</div></div>
 
----
 

Latest revision as of 16:20, 10 August 2018

NORMDIST (Number,Mean,StandardDeviation,Cumulative,accuracy)


  • Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle Number} is the value.
  • Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle Mean} is the mean.
  • Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle StandardDeviation} is the standard deviation
  • Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle Cumulative} is the logical value like TRUE or FALSE.
  • Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle Accuracy} is correct decimal places for the result.
    • NORMDIST(),returns the normal cumulative distribution.

Description

  • This function gives the Normal Distribution for the particular Mean and Standard Deviation.
  • Normal Distribution is the function that represents the distribution of many random variables as a symmetrical bell-shaped graph.
  • This distribution is the Continuous Probability Distribution.It is also called Gaussian Distribution.
  • In Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle NORMDIST (Number,Mean,StandardDeviation,Cumulative,accuracy)} ), is the value of the function, Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle Mean} is the Arithmetic Mean of the distribution, Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle StandardDeviation} is the Standard Deviation of the distribution and Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle Cumulative} is the Logical Value that indicating the form of the function.
  • Suppose Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle Cumulative} is TRUE, this function gives the Cumulative Distribution, and it is FALSE, this function gives the Probability Mass Function.
  • The equation for the Normal Distribution is:
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle  f(x,\mu,\sigma)=\frac{1}{\sigma \sqrt{2\pi}}.e^{-\left({\tfrac{(x-\mu)^2}{2\sigma^2}}\right)}}

where Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mu} is the Mean of the distribution, Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sigma} is the Standard Deviation of the distribution.

  • In this formula, suppose Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mu} = 0 and Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sigma} = 1, then the distribution is called the Standard Normal Distribution or the Unit Normal Distribution.
 This function will return the result as error when any one of the argument is non-numeric and Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle StandardDeviation<=0}
.
  • when Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle Cumulative} is TRUE , this formula is the integral from Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -\infty} to Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle Number} and Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle Cumulative} is FALSE , we can use the same formula.

Examples

  1. =NORMDIST(37,29,2.1,FALSE) = 0.000134075
  2. =NORMDIST(37,29,2.1,TRUE) = 0.99993041384
  3. =NORMDIST(10.75,17.4,3.2,TRUE) = 0.01884908749
  4. =NORMDIST(10.75,17.4,3.2,FALSE) = 0.014387563

Related Videos

NORMDIST

See Also

References

Normal distribution