Manuals/calci/ZTEST

Revision as of 15:30, 18 June 2018 by Devika (talk | contribs)
ZTEST(ar,x,sigma)


ZTEST (Array,Mean,StandardDeviationForPopulation,IsTwoTailed,Accuracy)

  • Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle Array} is the set of values.
  • Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle Mean} is the mean value.
  • Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle StandardDeviationForPopulation} is the standard deviation of the population.
  • Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle IsTwoTailed} is the value of the tail.
  • Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle Accuracy} gives accurate value of the solution.

Description

  • This function gives the one-tailed probability of z-test.
  • Z-test is used to determine whether two population means are different when the variances are known and the sample size is large.
  • In Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle ZTEST (Array,Mean,StandardDeviationForPopulation,IsTwoTailed,Accuracy)} ,Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle Array } is the array of values against which the hypothesized sample mean is to be tested.
  • Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle Mean } is the hypothesized sample mean, and Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle StandardDeviationForPopulation} is the standard deviation of the population.
  • When we are not giving the sigma value, it will use the standard deviation of sample.
  • This function returns the probability that the supplied hypothesized sample mean is greater than the mean of the supplied data values.
  • The test statistic should follow a normal distribution.
  • ZTEST is calculated when sigma is not omitted and x=μ0 : Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle ZTEST(ar,\mu_0,sigma)= 1-NORMDIST(\bar{x}-\mu_0)/\frac{sigma}{\sqrt{n}}}
  • ZTEST is calculated when sigma is omitted and x=μ0:

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle ZTEST(ar,\mu_0)=1-NORMDIST(\bar{x}-\mu_0)/\frac{s}{\sqrt{n}}} where   is sample mean , Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle s} is the sample deviation and Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle n} is the size of the sample.

  • Suppose we want to calculate the z-test for two tailed probability then this can be done by using the Z_test function: Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 2*MIN(ZTEST(ar,\mu_0,sigma),1-ZTEST(ar,\mu_0,sigma))} .
  • This function will give the result as error when
    1. Any one of the argument is non-numeric.
    2. Array or Mean value is empty.
    3. Array contains only one value.

Examples

  1. Example 1
Spreadsheet
A B C D E F G
1 10 15 7 2 19 20 12
2 3 4 8 1 10 15 5
  1. =ZTEST(A1:G1,4) = 0.00042944272036
  2. =2*MIN(ZTEST(A1:G1,4),1-ZTEST(A1:G1,4)) = 0.000858885440
  3. =ZTEST(A2:F2,10) = 0.9323691845
  4. =2*MIN(ZTEST(A2:F2,10),1-ZTEST(A2:F2,10)) = 0.135261630850

Related Videos

Z-TEST

See Also

References